Speech: An eye and ear affair!
Pamela Trudeau-Fisette – ptrudeaufisette@gmail.com
Lucie Ménard – menard.lucie@uqam.ca
Université du Quebec à Montréal
320 Ste-Catherine E.
Montréal, H3C 3P8

Popular version of poster session 2aSC, “Auditory feedback perturbation of vowel production: A comparative study of congenitally blind speakers and sighted speakers”
Presented Tuesday morning, May 19, 2015, Ballroom 2, 8:00 AM – 12:00 noon
169th ASA Meeting, Pittsburgh
When learning to speak, young infants and toddlers use auditory and visual cues to correctly associate speech movements to a specific speech sound. In doing so, typically developing children compare their own speech and those of their ambient language to build and improve the relationship between what they hear, see and feel, and how to produce it.

In many day-to-day situations, we exploit the multimodal nature of speech: in noisy environments, for instance like in a cocktail party, we look at our interlocutor’s face and use lip reading to recover speech sounds. When speaking clearly, we open our mouth wider to make ourself sound more intelligible. Sometimes, just seeing someone’s face is enough to communicate!

What happens in cases of congenital blindness? Despite the fact that blind speakers learn to produce intelligible speech, they do not quite speak like sighted speakers do. Since they do not perceive others’ visual cues, blind speakers do not produce visible labial movements as much as their sighted peers do.

Production of the French vowel “ou” (similar as in cool) produced by a sighted adult speaker (on the left) and a congenitally blind adult speaker (on the right). We can clearly see that the articulatory movements of the lips are more explicit for the sighted speaker.

Therefore, blind speakers put more weight on what they hear (auditory feedback) than sighted speakers, because one sensory input is lacking. How does that affect the way blind individuals speak?
To answer this question, we conducted an experiment during which we asked congenitally blind adult speakers and sighted adult speakers to produce multiple repetitions of the French vowel “eu”. While they were producing the 130 utterances, we gradually altered their auditory feedback through headphones – without them knowing it- so that they were not hearing the exact sound they were saying. Consequently, they needed to modify the way they produced the vowel in order to compensate for the acoustic manipulation, so they could hear the vowel they were asked to produce (and the one they thought they were saying all along!).
What we were interested in is whether blind speakers and sighted speakers would react differently to this auditory manipulation. The blind speakers not being able to rely on visual feedback, we hypothesized that they would grant more importance on their auditory feedback and, therefore, compensate to a greater extent for the acoustic manipulation.

To explore this matter, we observed the acoustic (produced sounds) and articulatory (lips and tongue movements) differences between the two groups at three distinct time points of the experiment phases.
As predicted, congenitally blind speakers compensated for the altered auditory feedback in a greater extent than their sighted peers. More specifically, even though both speaker groups adapted their productions, the blind group compensated more than the control group did, as if they were integrating the auditory information more strongly. Also, we found that both speaker groups used different articulatory strategies to respond to the applied manipulation: blind participants used their tongue (which is not visible when you speak) more to compensate. This latter observation is not surprising considering the fact that blind speakers do not use their lips (which is visible when you speak) as much as their sighted peers do.

Tags: speech, language, learning, vision, blindness

Share This