What fish species are singing along the southern Australian continental shelf?

Lauren Amy Hawkins – laurenhawkins799@gmail.com

Centre for Marine Science and Technology, Curtin University, Bentley, Western Australia, 6102, Australia

Benjamin Saunders
School of Molecular and Life Sciences
Curtin University
Bentley, Western Australia, Australia

Christine Erbe, Iain Parnum, Chong Wei, and Robert McCauley
Centre for Marine Science and Technology
Curtin University
Bentley, Western Australia, Australia

Popular version of 5aAB6 – The search to identify the fish species chorusing along the southern Australian continental shelf
Presented at the 185 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0023649

Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.

Unknown fish species are singing in large aggregations along almost the entire southern Australian continental shelf on a daily basis, yet we still have little idea of what species these fish are or what this means to them. These singing aggregations are known as fish choruses, they occur when many individuals call continuously for a prolonged period, producing a cacophony of sound that can be detected kilometres away. It is difficult to identify fish species that chorus in offshore marine environments. The current scientific understanding of the sound-producing abilities of all fish species is limited and offshore marine environments are challenging to access. This project aimed to undertake a pilot study which attempted to identify the source species of three fish chorus types (shown below) detected along the southern Australian continental shelf off Bremer Bay in Western Australia from previously collected acoustic recordings.

Each fish chorus type occurred over the hours of sunset, dominating the soundscape within unique frequency bands. Have a listen to the audio file below to get a feeling for how noisy the waters off Bremer Bay become as the sun goes down and the fish start singing. The activity of each fish chorus type changed over time, indicating seasonality in presence and intensity. Chorus I and II demonstrated a peak in calling presence and intensity over late winter to early summer, while Chorus III demonstrated peak calling over late winter to late spring. This informed the sampling methodology of the pilot study, and in December 2019, underwater acoustic recorders and unbaited video recorders were deployed simultaneously on the seafloor along the continental shelf off Bremer Bay to attempt to collect evidence of any large aggregations of fish species present during the production of the fish choruses. Chorus I and the start of Chorus II were detected on the acoustic recordings, corresponding with video recordings of large aggregations of Red Snapper (Centroberyx gerrardi) and Deep Sea Perch (Nemadactylus macropterus). A spectrogram of the acoustic recordings and snapshots from the corresponding underwater video recordings are shown below.

Click here to play audio

The presence of large aggregations of Red Snapper present while Chorus I was also present was of particular interest to the authors. Previous dissections of this species had revealed that Red Snapper possessed anatomical features that could support sound production through the vibration of their swimbladder using specialised muscles. To explore this further, computerized tomography (CT) scans of several Red Snapper specimens were undertaken. We are currently undertaking 3D modelling of the sound-producing mechanisms of this species to compute the resonance frequency of the fish to better understand if this species could be producing Chorus I.

Listening to fish choruses can tell us about where these fish live, what habitats they use, their spawning behaviour, their feeding behaviour, can indicate their biodiversity, and in certain circumstances, can determine the local abundance of a fish population. For this information to be applied to marine spatial planning and fish species management, it is necessary to identify which fish species are producing these choruses. This pilot study was the first step in an attempt to develop an effective methodology that could be used to address the challenging task of identifying the source species of fish choruses present in offshore environments. We recommend that future studies take an integrated approach to species identification, including the use of arrays of hydrophones paired with underwater video recorders.

Listening to the Largest Tree on Earth #ASA184

Listening to the Largest Tree on Earth #ASA184

Hydrophones record the sounds of the massive Pando aspen grove, from its leaves to its roots.

Media Contact:
Ashley Piccone
AIP Media
301-209-3090
media@aip.org

CHICAGO, May 10, 2023 – Spread across 106 acres in southcentral Utah, the Pando aspen grove resembles a forest but is actually a single organism with more than 47,000 genetically identical aspen stems connected at the root. Pando is the world’s largest tree by weight and land mass. Research suggests Pando has been regenerating for 9,000 years, making it one of the oldest organisms on Earth.

The Pando aspen grove in southcentral Utah after a thunderstorm. Credit: Jeff Rice. Copyright 2023. All Rights Reserved.

As part of the 184th Meeting of the Acoustical Society of America, Jeff Rice and Lance Oditt will describe their work to reveal a unique acoustic portrait of this botanical wonder. Their presentation, “Beneath the tree: The sounds of a trembling giant,” will take place Wednesday, May 10, at 10:30 a.m. Eastern U.S. in the Great America 1/2 room, as part of the meeting running May 8-12 at the Chicago Marriott Downtown Magnificent Mile Hotel.

“Pando challenges our basic understanding of the world,” said presenter Jeff Rice, a sound artist from Seattle. “The idea that this giant forest could be a single organism defies our concept of the individual. Its vastness humbles our sense of space.”

After recording Pando’s leaves for The New York Times Magazine’s special issue “Listen to the World” in 2018, Rice returned in July 2022 as an artist-in-residence for the nonprofit group, Friends of Pando, which Oditt founded in 2019. Rice used a variety of microphones to record Pando’s leaves, birds, and weather.

“The sounds are beautiful and interesting, but from a practical standpoint, natural sounds can be used to document the health of an environment,” he said. “They are a record of the local biodiversity, and they provide a baseline that can be measured against environmental change.”

Rice was particularly captivated by the sound of vibrations passing through the tree during a windstorm. He wanted to see if they could record the sound of Pando’s root system, which can reach depths of 90 feet by some accounts. Oditt, executive director of Friends of Pando, identified several potential recording locations below the surface.

“Hydrophones don’t just need water to work,” said Rice. “They can pick up vibrations from surfaces like roots as well, and when I put on my headphones, I was instantly surprised. Something was happening. There was a faint sound.”

That sound is not conclusively from Pando’s root system. But a handful of experiments support the idea. Rice and Oditt were able to show that vibrations can pass from tree to tree through the ground. When they banged lightly on a branch 90 feet away, the hydrophone registered with a low thump. Rice compares this to the classic tin can telephone.

“It’s similar to two cans connected by a string,” he said. “Except there are 47,000 cans connected by a huge root system.”

A similar phenomenon occurred during a thunderstorm. As leaves moved more intensely in the wind, the signal recorded by the hydrophone also increased.

“The findings are tantalizing. While it started as art, we see enormous potential for use in science. Wind, converted to vibration (sound) and traveling the root system, could also reveal the inner workings of Pando’s vast hidden hydraulic system in a nondestructive manner,” said Oditt. “Friends of Pando plans to use the data gathered as the basis for additional studies on water movement, how branch arrays are related to one another, insect colonies, and root depth, all of which we know little about today.”

———————– MORE MEETING INFORMATION ———————–
Main meeting website: https://acousticalsociety.org/asa-meetings/
Technical program: https://eppro02.ativ.me/web/planner.php?id=ASASPRING23&proof=true

ASA PRESS ROOM
In the coming weeks, ASA’s Press Room will be updated with newsworthy stories and the press conference schedule at https://acoustics.org/asa-press-room/.

LAY LANGUAGE PAPERS
ASA will also share dozens of lay language papers about topics covered at the conference. Lay language papers are 300 to 500 word summaries of presentations written by scientists for a general audience. They will be accompanied by photos, audio, and video. Learn more at https://acoustics.org/lay-language-papers/.

PRESS REGISTRATION
ASA will grant free registration to credentialed and professional freelance journalists. If you are a reporter and would like to attend the meeting or virtual press conferences, contact AIP Media Services at media@aip.org.  For urgent requests, AIP staff can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

Warmer Climate Could Cause Puerto Rico’s Frogs to Croak #ASA184

Warmer Climate Could Cause Puerto Rico’s Frogs to Croak #ASA184

Rising temperatures leave their mark in the distinctive calls of the coqui frog.

Media Contact:
Ashley Piccone
AIP Media
301-209-3090
media@aip.org

CHICAGO, May 8, 2023 – The coqui frog is one of Puerto Rico’s most iconic animals. It gets its name from its distinctive two-note call, “co-qui,” which can be heard throughout the island every night. The males of the species produce these calls to mark their territory and ward away rivals, but scientists can also use them to study the changing climate.

Peter Narins of the University of California, Los Angeles will describe changes in the calls of the coqui frog over a 23-year period in his talk, “Climate change drives frog call change in Puerto Rico: Predictions and implications.” The presentation will take place Monday, May 8, at 2:40 p.m. Eastern U.S. in room Chicago F/G, as part of the 184th Meeting of the Acoustical Society of America running May 8-12 at the Chicago Marriott Downtown Magnificent Mile Hotel.

Male coqui calling in El Yunque, Puerto Rico. Credit: K. Wells

Over two decades ago, Narins recorded the sounds of the coqui frog along the slopes of Puerto Rico’s El Yunque Peak. His team discovered the calls changed based on elevation. Like all amphibians, coqui frogs are highly sensitive to changes in temperature. On cold mountain peaks, the frogs grow larger than in warmer valleys, and this size discrepancy is reflected in their calls.

“Coqui that produced short, high-pitched calls at high rates lived near the base of the mountain, while the calls of animals living near the mountain’s peak were longer, lower-pitched, and repeated less frequently,” said Narins.

Upon returning to the mountain two decades later, Narins and a team including colleague Sebastiaan Meenderink discovered that every frog call had grown higher in pitch.

“In order to record a call with certain characteristics we had to move to a slightly higher altitude,” said Meenderink. “It was as if all the animals had moved up the mountain.”

This mini-migration corresponds with the temperature shift induced by climate change and foreshadows a dire future for the coqui. As temperatures continue to rise, the frogs will continue to retreat up the mountain until they run out of room.

“For now, the consequences are not dire,” said Meenderink. “A barely perceptible change in frog body size and call has little impact on the environment. However, if left unabated, the temperature increase will eventually cause a collapse of the coqui population, which will be catastrophic for the Puerto Rican ecosystem.”

———————– MORE MEETING INFORMATION ———————–
Main meeting website: https://acousticalsociety.org/asa-meetings/
Technical program: https://eppro02.ativ.me/web/planner.php?id=ASASPRING23&proof=true

ASA PRESS ROOM
In the coming weeks, ASA’s Press Room will be updated with newsworthy stories and the press conference schedule at https://acoustics.org/asa-press-room/.

LAY LANGUAGE PAPERS
ASA will also share dozens of lay language papers about topics covered at the conference. Lay language papers are 300 to 500 word summaries of presentations written by scientists for a general audience. They will be accompanied by photos, audio, and video. Learn more at https://acoustics.org/lay-language-papers/.

PRESS REGISTRATION
ASA will grant free registration to credentialed and professional freelance journalists. If you are a reporter and would like to attend the meeting or virtual press conferences, contact AIP Media Services at media@aip.org.  For urgent requests, AIP staff can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

Behaviors produced by a variety of sounds among eagles: A study with survival implications

JoAnn McGee – mcgeej@umn.edu

University of Minnesota
75 East River Parkway
Minneapolis, MN 55455
United States

Christopher Feist
Christopher Milliren
Lori Arent
Julia B. Ponder
Peggy Nelson
Edward J. Walsh

Popular version of 3aABb4 – Behavioral responses of bald eagles (Haliaeetus leucocephalus) to acoustic stimuli in a laboratory setting
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018607
Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.

The ultimate goal of this project is to protect eagles by discouraging these charismatic birds from entering the airspace of wind energy facilities. The specific question under consideration centers on whether or not an acoustic cue, a sound, can be used for that purpose, to steer eagles away from harm’s way. Our specific goal in this particular study was to take the next step along our overall research path and determine if behaviors of bald eagles in particular were affected by different sound stimuli in a controlled laboratory environment.

Perhaps to be expected, behavioral responses varied significantly. Some birds explored their immediate airspace avidly, while others exhibited a more restrained set of behavioral responses to sound stimulation.

To get a feeling for the task, consider the reaction of this eagle to a sound stimulus in a quiet laboratory setting .

To collect these data, a bird was placed in a sound-damped room and the experiment was conducted from a control center just outside the exposure space. Birds were videotaped as sounds were delivered to one of two speakers and a group of unbiased judges was asked to determine (1) whether the bird responded to the sound based on its behavior, (2) to qualitatively assess the strength of the response, and (3) to identify the behaviors associated with the response. Twelve sounds were tested and judges were instructed to observe the eagle during a specified time window without knowing which sound, if any, had been played. Spectrograms of the sounds tested are shown in the figure.


By far the most common response was an attempt to localize the sound source based on head turning toward a speaker, although birds also frequently tilted their heads in response to stimuli. Females were slightly more responsive to sound stimuli than males, and not surprisingly, stimuli that elicited a higher number of responses also elicited stronger or more evident responses. Complex and natural sounds, for example, sounds produced by eagles, eaglets and pesky mobbing crow sounds, elicited more and stronger responses than man-made stimuli. Generally, bald eagles were fairly accurate in locating the direction that the sound originated, and, as before, females performed better than males.

The results from this study provide a critical step in an effort to protect eagles as we move away from the use of fossil fuels and rely more on wind power. We come away from this study with a better understanding of the types of sound signals that elicit more and stronger responses in bald eagles, and with the confidence that we will be able to objectively assess behavioral responses in more natural settings. We now know what these magnificent birds can hear, and we know that certain sound stimuli are more effective than others in evoking behavioral responses, taking us one step closer to our ultimate goal, to save bald eagles from undesirable outcomes and to give wind facility developers the tools needed to manage their facilities in an even more eco-friendly manner.

Turning Up Ocean Temperature & Volume – Underwater Soundscapes in a Changing Climate

Freeman Lauren – lauren.a.freeman3.civ@us.navy.mil

Instagram: @laur.freeman

NUWC Division Newport, NAVSEA, Newport, RI, 02841, United States

Dr. Lauren A. Freeman, Dr. Daniel Duane, Dr. Ian Rooney from NUWC Division Newport and
Dr. Simon E. Freeman from ARPA-E

Popular version of 1aAB1 – Passive Acoustic Monitoring of Biological Soundscapes in a Changing Climate
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018023

Climate change is impacting our oceans and marine ecosystems across the globe. Passive acoustic monitoring of marine ecosystems has been shown to provide a window into the heartbeat of an ecosystem, its relative health, and even information such as how many whales or fish are present in a given day or month. By studying marine soundscapes, we collate all of the ambient noise at an underwater location and attribute parts of the soundscape to wind and waves, to boats, and to different types of biology. Long term biological soundscape studies allow us to track changes in ecosystems with a single, small, instrument called a hydrophone. I’ve been studying coral reef soundscapes for nearly a decade now, and am starting to have time series long enough to begin to see how climate change affects soundscapes. Some of the most immediate and pronounced impacts of climate change on shallow ocean soundscapes are evident in varying levels of ambient biological sound. We found a ubiquitous trend at research sites in both the tropical Pacific (Hawaii) and sub-tropical Atlantic (Bermuda) that warmer water tends to be associated with higher ambient noise levels. Different frequency bands provide information about different ecological processes (such as fish calls, invertebrate activity, and algal photosynthesis). The response of each of these processes to temperature changes is not uniform, however each type of ambient noise increases in warmer water. At some point, ocean warming and acidification will fundamentally change the ecological structure of a shallow water environment. This would also be reflected in a fundamentally different soundscape, as described by peak frequencies and sound intensity. While I have not monitored the phase shift of an ecosystem at a single site, I have documented and shown that healthy coral reefs with high levels of parrotfish and reef fish have fundamentally different soundscapes, as reflected in their acoustic signature at different frequency bands, than coral reefs that are degraded and overgrown with fleshy macroalgae. This suggests that long term soundscape monitoring could also track these ecological phase shifts under climate stress and other impacts to marine ecosystems such as overfishing.

A healthy coral reef research site in Hawaii with vibrant corals, many reef fish, and copious nooks and crannies for marine invertebrates to make their homes.
Soundscape segmented into three frequency bands capturing fish vocalizations (blue), parrotfish scrapes (red), and invertebrate clicks along with algal photosynthesis bubbles (yellow). All features show an increase in ambient noise level (PSD, y-axis) with increasing ocean temperature at each site studied in Hawaii.

I know what you did last winter: Bowhead whale unusual winter presence in the Beaufort Sea

Nikoletta Diogou – niki.diogou@gmail.com

Twitter: @NikiDiogou
Instagram: @existentialnyquist

University of Victoria
Victoria, BC V5T 4H3
Canada

Additional authors: William Halliday, Stan E. Dosso, Xavier Mouy, Andrea Niemi, Stephen Insley

Popular version of 1aAB8 – I know what you did last winter: Bowhead whale anomalous winter acoustic occurrence patterns in the Beaufort Sea, 2018-2020
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018030

The Arctic is warming at an alarming pace due to climate change. As waters are warming and sea ice is shrinking, the arctic ecosystems are responding with adaptations that we only recently started to observe and strive to understand. Here we present the first evidence of bowhead whales, endemic baleen whales to the Arctic, breaking their annual migration and being detected year-round at their summer grounds.

Whales, positioned at the top of the food web, serve as excellent bio-indicators of environmental change and the health of marine ecosystems. There are more than 16,000 bowhead whales in the Bering-Chukchi-Beaufort (BCB) population in the Western Arctic. The BCB bowheads spend their winters in the ice-free Bering Sea, and typically start a journey early each spring of over 6000 km to summer feeding grounds in the Beaufort Sea, returning to the Bering Sea in early fall when ice forms on the Beaufort Sea (Figure 1). But how stable is this journey in our changing climate?

Figure 1. Map showing migration route of BCB bowhead whales and the wider study area.

The Amundsen Gulf (Figure 1), in the Canadian Arctic Archipelago of the Beaufort Sea, is an important summer-feeding area for the BCB whales. However, winter inaccessibility and harsh conditions year-round make long-term observation of marine wildlife here challenging. Passive acoustic monitoring has proven particularly useful for monitoring vocal marine animals such as whales in remote areas, and offers a remarkable opportunity to explore where and when whales are present in the cold darkness of Arctic waters. Figure 2 shows examples of two types of bowhead whale vocalizations (songs and moans) together with other biological and environmental sounds recorded in the Amundsen Gulf.

Figure 2. Examples of spectrograms recorded in the Amundsen Gulf of bowhead whale songs on the left, and bowhead whale moans on the right. Spectrograms are visual representations of sound, indicating the pitch (frequency) and loudness of sounds as a function of time. Spectrograms on the left include bearded seal calls (trills) interfering with the bowhead songs. Spectrograms on the right include other ambient sounds (ice noise) that interfere with the bowhead moans. Image adapted from authors’ original paper.

Examples of characteristic calls of bowhead whales recorded during 2018-2019 in the southern Amundsen Gulf.

In September of 2018 and 2019 we deployed underwater acoustic recorders at five sites in the southern Amundsen Gulf and recorded the ocean sound for two years to detect bowhead whale calls and quantify the whale’s seasonal and geographic distribution. In particular, we looked for any disruptions to their typical migration patterns. And sure enough, there it was.

A combination of automated and manual analysis of the acoustic recordings revealed that bowhead whales were present at all sites, as shown for 3 sites (CB50, CB300 and PP) in Figure 3. Bowhead calls dominated the acoustic data from early spring to early fall, during their summer migration, confirming the importance of the area as a core foraging site for this whale population. But surprisingly, the analysis uncovered a fascinating anomaly in bowhead whale behavior: bowhead calls were detected at each site through the winter of 2018-2019, representing the first clear evidence of bowhead whales overwintering at their summer foraging grounds (Figure 3). This is a significant departure from their usual migratory pattern. However, analysis of the 2019-2020 recordings did not indicate whales over-wintering that year. Hence, it is not yet clear if the over-wintering was a one-time event or the start of a more stable shift in bowhead whale ecology due to climate change. The variability in bowhead acoustic presence between the two years may be partly explained by differences in sea ice coverage and prey density (zooplankton), as summarized in Figure 4.

Figure 3. Number of days with acoustic detections per month for bowhead whales for sites CB50 (blue), CB300 (green), and PP (red) in 2018-2019. The yellow shaded areas represent time periods at each station when the ice concentration was below 20% (“ice-free”), grey areas when ice concentration was 20%-70% (“shoulder season”), and white areas when ice concentration was greater than 70%. Image adapted from authors’ original paper.

Figure 4. Graphical summary of the objectives and major results of the study.

The findings of this study have important implications for understanding how climate change is affecting the Arctic ecosystem, and highlights the need for continued monitoring of Arctic wildlife. Passive acoustic monitoring can provide data on how whale ecology is responding to a changing environment, which can be used to inform conservation efforts to better protect Arctic ecosystems and their inhabitants.