2aSCb3 – How would you sketch a sound with your hands? – Hugo Scurto, Guillaume Lemaitre, Jules Françoise, Patrick Susini, Frédéric Bevilacqua

2aSCb3 – How would you sketch a sound with your hands? – Hugo Scurto, Guillaume Lemaitre, Jules Françoise, Patrick Susini, Frédéric Bevilacqua

“How would you sketch a sound with your hands?”

Hugo Scurto – Hugo.Scurto@ircam.fr
Guillaume Lemaitre – Guillaume.Lemaitre@ircam.fr
Jules Françoise – Jules.Francoise@ircam.fr
Patrick Susini – Patrick.Susini@ircam.fr
Frédéric Bevilacqua – Frederic.Bevilacqua@ircam.fr
Ircam
1 place Igor Stravinsky
75004 Paris, France

 

Popular version of paper 2aSCb3, “Combining gestures and vocalizations to imitate sounds”
Presented Tuesday morning, November 3, 2015, 10:30 AM in Grand Ballroom 8
170th ASA Meeting, Jacksonville

 

 

Scurto fig 1

Figure 1. A person hears the sound of door squeaking and imitates it with vocalizations and gestures. Can the other person understand what he means?

Have you ever listened to an old Car Talk show? Here is what it sounded like on NPR back in 2010:

“So, when you start it up, what kind of noises does it make?
– It just rattles around for about a minute. […]
– Just like budublu-budublu-budublu?
– Yeah! It’s definitely bouncing off something, and then it stops”

 

As the example illustrates, it is often very complicated to describe a sound with words. But it is really easy to make it with our built-in sound-making system: the voice! In fact, we have observed earlier that this is exactly what people do: when we ask a person to communicate a sound to another person, she will very quickly try to recreate this noise with her voice – and also use a lot of gestures.

And this works! Communicating sounds with voice and gesture is much more effective than describing them with words and sentences. Imitations of sounds are fun, expressive, spontaneous, widespread in human communication, and very effective. These non-linguistic vocal utterances have been little studied, but nevertheless have the potential to provide researchers with new insights into several important questions in domains such as articulatory phonetics and auditory cognition.

The study we are presenting at this ASA meeting is part of a larger European project on how people imitate sounds with voice and gestures: SkAT-VG (“Sketching Audio Technologies with Voice and Gestures”, http://www.skatvg.eu): How do people produce vocal imitations (phonetics)? What are imitations made of (acoustics and gesture analysis)? How do other people interpret them (psychology)? The ultimate goal is to create “sketching” tools for sound designers (the persons that create the sounds of everyday products). If you are an architect and want to sketch a house, you can simply draw it on a sketchpad. But what do you do if you are a sound designer and want to rapidly sketch the sound of a new motorbike? Well, all that is available today are cumbersome pieces of software. Instead, the Skat-VG project aims to offer sound designers new tools that are as intuitive as a sketching pad: simply use their voice and gestures to control complex sound design tools. Therefore, the SkAT-VG project also conducts research in machine learning, sound synthesis, and studies how sound designers work.

Here at the ASA meeting, we are presenting a partial study in which we asked the question: “What do people use gestures for when they imitate a sound?” In fact, people use a lot of gestures, but we do not know what information these gestures convey: Are they redundant with the voice? Do they convey specific pieces of information that the voice cannot represent?

We first collected a huge database of vocal and gestural imitations. Then, we asked 50 participants to come to our lab and make vocal and gestural imitations for several hours. We recorded their voice, filmed them with a high-speed camera, and used a depth camera and accelerometers to measure their gestures. This resulted in a database of about 8000 imitations! This database is an unprecedented amount of material that now allows

 

We first analyzed the database qualitatively, by watching and annotating the videos. From this analysis, several hypotheses about the combination of gestures and vocalizations were drawn. Then, to test these hypotheses, we asked 20 participants to imitate 25 specially synthesized sounds with their voice and gestures.

The results showed a quantitative advantage of voice over gesture for communicating rhythmic information. Voice can reproduce accurately higher tempos than gestures, and is more precise than gestures when reproducing complex rhythmic patterns. We also found that people often use gestures in a metaphorical way, whereas voice reproduces some acoustic features of the sound. For instance, people shake their hands very rapidly whenever a sound is stable and noisy. This type of gesture does not really follow a feature of the sound: it simply means that the sound is noisy.

Overall, our study reveals the metaphorical function of gestures during sound imitation. Rather than following an acoustic characteristic, gestures expressively emphasize the vocalization and signal the most salient features. These results will inform the specifications of the SkAT-VG tools and make the tools more intuitive.

 

 

4pAB3 – Can a spider “sing”? If so, who might be listening? – Alexander L. Sweger, George W. Uetz

4pAB3 – Can a spider “sing”? If so, who might be listening? – Alexander L. Sweger, George W. Uetz

Can a spider “sing”? If so, who might be listening?

Alexander L. Sweger – swegeral@mail.uc.edu
George W. Uetz – uetzgw@ucmail.uc.edu
University of Cincinnati
Department of Biological Sciences
2600 Clifton Ave, Cincinnati OH 45221

Popular version of paper 4pAB3, “the potential for acoustic communication in the ‘purring’ wolf spider’
Presented Thursday afternoon, May 21, 2015, 2:40 PM, Rivers room
169th ASA Meeting, Pittsburgh

While we are familiar with a wide variety of animals that use sound to communicate- birds, frogs, crickets, etc.- there are thousands of animal species that use vibration as their primary means of communication. Since sound and vibration are physically very similar, the two are inextricable connected, but biologically they are still somewhat separate modes of communication. Within the field of bioacoustics, we are beginning to fully realize how prevalent vibration is as a mode of animal communication, and how interconnected vibration and sound are for many species.

Wolf spiders are one group that heavily utilizes vibration as a means of communication, and they have very sensitive structures for “listening” to vibrations. However, despite the numerous vibrations that are involved in spider communication, they are not known for creating audible sounds. While a lot of species that use vibration will simultaneously use airborne sound, spiders do not possess structures for hearing sound, and it is generally assumed that they do not use acoustic communication in conjunction with vibration.
The “purring” wolf spider (Gladicosa gulosa) may be a unique exception to this assumption. Males create vibrations when they communicate with potential mates in a manner very similar to other wolf spider species, but unlike other wolf spider species, they also create airborne sounds during this communication. Both the vibrations and the sounds produced by this species are of higher amplitude than other wolf spider species, both larger and smaller, meaning this phenomenon is independent of species size. While other acoustically communicating species like crickets and katydids have evolved structures for producing sound, these spiders are vibrating structures in their environment (dead leaves) to create sound. Since we know spiders do not possess typical “ears” for hearing these sounds, we are interested in finding out if females or other males are able to use these sounds in communication. If they do, then this species could be used as an unusual model for the evolution of acoustic communication.

swegerfigure1

Figure 1: An image of a male “purring” wolf spider, Gladicosa gulosa, and the spectrogram of his accompanied vibration. Listen to a recording of the vibration here,


and the accompanying sound here.

Our work has shown that the leaves themselves are vital to the use of acoustic communication in this species. Males can only produce the sounds when they are on a surface that vibrates (like a leaf) and females will only respond to the sounds when they are on a similar surface. When we remove the vibration and only provide the acoustic signal, females still show a significant response and males do not, suggesting that the sounds produced by males may play a part in communicating specifically with females.

So, the next question is- how are females responding to the airborne sound without ears? Despite the relatively low volume of the sounds produced, they can still create a vibration in a very thin surface like a leaf. This creates a complex method of communication- a male makes a vibration in a leaf that creates a sound, which then travels to another leaf and creates a new vibration, which a female can then hear. While relatively “primitive” compared to the highly-evolved acoustic communication in birds, frogs, insects, and other species, this unique usage of the environment may create opportunities for studying the evolution of sound as a mode of animal communication.

Tags: animals, vibrations, acoustics, communication, spiders