3aUW8 – A view askew: Bottlenose dolphins improve echolocation precision by aiming their sonar beam to graze the target – Laura N. Kloepper

3aUW8 – A view askew: Bottlenose dolphins improve echolocation precision by aiming their sonar beam to graze the target – Laura N. Kloepper

A view askew: Bottlenose dolphins improve echolocation precision by aiming their sonar beam to graze the target

Laura N. Kloepper– lkloepper@saintmarys.edu
Saint Mary’s College
Notre Dame, IN 46556

 

Yang Liu–yang.liu@umassd.edu
John R. Buck– jbuck@umassd.edu
University of Massachusetts Dartmouth
285 Old Westport Road
Dartmouth, MA 02747

 

Paul E. Nachtigall–nachtiga@hawaii.edu
University of Hawaii at Manoa
PO Box 1346
Kaneohe, HI 96744

 

Popular version of paper 3aUW8, “Bottlenose dolphins direct sonar clicks off-axis of targets to maximize Fisher Information about target bearing”

Presented Wednesday morning, November 4, 2015, 10:25 AM in River Terrace 2

170th ASA Meeting, Jacksonville

 

Bottlenose dolphins are incredible echolocators. Using just sound, they can detect a ping-pong ball sized object from 100 m away, and discriminate between objects differing in thickness by less than 1 mm. Based on what we know about man-made sonar, however, the dolphins’ sonar abilities are an enigma–simply put, they shouldn’t be as good at echolocation as they actually are.

Typical manmade sonar devices achi­eve high levels of performance by using very narrow sonar beams. Creating narrow beams requires large and costly equipment. In contrast to these manmade sonars, bottlenose dolphins achieve the same levels of performance with a sonar beam that is many times wider–but how? Understanding their “sonar secret” can help lead to more sophisticated synthetic sonar devices.

Bottlenose dolphins’ echolocation signals contain a wide range of frequencies.  The higher frequencies propagate away from the dolphin in a narrower beam than the low frequencies do. This means the emitted sonar beam of the dolphin is frequency-dependent.  Objects directly in front of the animal echo back all of the frequencies.   However, as we move out of the direct line in front of the animal, there is less and less high frequency, and when the target is way off to the side, only the lower frequencies reach the target to bounce back.   As shown below in Fig. 1, an object 30 degrees off the sonar beam axis has lost most of the frequencies.

 

Kloepper-fig1

 

Figure 1. Beam pattern and normalized amplitude as a function of signal frequency and bearing angle. At 0 degrees, or on-axis, the beam contains an equal representation across all frequencies. As the bearing angle deviates from 0, however, the higher frequency components fall off rapidly.

Consider an analogy to light shining through a prism.  White light entering the prism contains every frequency, but the light leaving the prism at different angles contains different colors.  If we moved a mirror to different angles along the light beam, it would change the color reflected as it moved through different regions of the transmitted beam.  If we were very good, we could locate the mirror precisely in angle based on the color reflected.  If the color changes more rapidly with angle in one region of the beam, we would be most sensitive to small changes in position at that angle, since small changes in position would create large changes in color.  In mathematical terms, this region of maximum change would have the largest gradient of frequency content with respect to angle.  The dolphin sonar appears to be exploiting a similar principle, only the different colors are different frequencies or pitch in the sound.

Prior studies on bottlenose dolphins assumed the animal pointed its beam directly at the target, but this assumption resulted in the conclusion that the animals shouldn’t be as “good” at echolocation as they actually are. What if, instead, they use a different strategy? We hypothesized that the dolphin might be aiming their sonar so that the main axis of the beam passes next to the target, which results in the region of maximum gradient falling on the target. Our model predicts that placing the region of the beam most sensitive to change on the target will give the dolphin greatest precision in locating the object.

To test our hypothesis, we trained a bottlenose dolphin to detect the presence or absence of an aluminum cylinder while we recorded the echolocation signals with a 16-element hydrophone array (Fig.2).

Laura Dolphin Graphics

 

Figure 2: Experimental setup. The dolphin detected the presence or absence of cylinders at different distances while we recorded sonar beam aim with a hydrophone array.

We then measured where the dolphin directed its sonar beam in relation to the target and found the dolphin pointed its sonar beam 7.05 ± 2.88 degrees (n=1930) away from the target (Fig.3).

 

Kloepper-Fig_3

 

Figure 3: Optimality in directing beam away from axis. The numbers on the emitted beam represent the attenuation in decibels relative to the sound emitted from the dolphin. The high frequency beam (red) is narrower than the blue and attenuates at angle more rapidly. The dolphin directs its sonar beam 7 degrees away from the target.

To then determine if certain regions of the sonar beam provide more theoretical “information” to the dolphin, which would improve its echolocation, we applied information theory to the dolphin sonar beam. Using the weighted frequencies present in the signal, we calculated the Fisher Information for the emitted beam of a bottlenose dolphin. From our calculations we determined 95% of the maximum Fisher Information to be between 6.0 and 8.5 degrees off center, with a peak at 7.2 degrees (Fig. 4).

 

 

Kloepper-Fig_4

Figure 4: The calculated Fisher Information as a function of bearing angle. The peak of the information is between 6.0 and 8.5 degrees off center, with a peak at 7.2 degrees.

The result? The dolphin is using a strategy that is the mathematically optimal! By directing its sonar beam slightly askew of the target (such as a fish), the target is placed in the highest frequency gradient of the beam, allowing the dolphin to locate the target more precisely.

2pABa9 – Energetically speaking, do all sounds that a dolphin makes cost the same? – Marla M. Holt, Dawn P. Noren

2pABa9 – Energetically speaking, do all sounds that a dolphin makes cost the same? – Marla M. Holt, Dawn P. Noren

Energetically speaking, do all sounds that a dolphin makes cost the same?

 

Marla M. Holt – marla.holt@noaa.gov

Dawn P. Noren – dawn.noren@noaa.gov

Conservation Biology Division

NOAA NMFS Northwest Fisheries Science Center

2725 Montlake Blvd East

Seattle WA, 98112

 

Robin C. Dunkin – rdunkin@ucsc.edu

Terrie M. Williams – tmwillia@ucsc.edu

 

Department of Ecology and Evolutionary Biology

University of California, Santa Cruz

100 Shaffer Road

Santa Cruz, CA 95060

 

Popular version of paper 2pABa9, “The metabolic costs of producing clicks and social sounds differ in bottlenose dolphins (Tursiops truncatus).”

Presented Tuesday afternoon, November 3, 2015, 3:15, City Terrace room

170th ASA Meeting Jacksonville

 

Dolphins are known to be quite vocal, producing a variety of sounds described as whistles, squawks, barks, quacks, pops, buzzes and clicks.  These sounds can be tonal (think whistle) or broadband (think buzz), short or long, or loud or not.  Some sounds, such as whistles, are used in social contexts for communication.  Other sounds, such as clicks and buzzes, are used for echolocation, a form of active biosonar that is important for hunting fish [1].   Regardless of what type of sound a dolphin makes in its diverse vocal repertoire, sounds are generated in an anatomically unique way compared to other mammals.   Most mammals, including humans, make sound in their throats or technically, in the larynx.  In contrast, dolphins make sound in their nasal cavity via two sets of structures called the “phonic lips” [2].

 

All sound production comes at an energetic cost to the signaler [3].  That is, when an animal produces sound, metabolic rate increases a certain amount above baseline or resting (metabolic) rate.  Additionally, many vociferous animals, including dolphins and other marine mammals, modify their acoustic signals in noise.  That is, they call louder, longer or more often in an attempt to be heard above the background din.  Ocean noise levels are rising, particularly in some areas from shipping traffic and other anthropogenic activities and this motivated a series of recent studies to understand the metabolic costs of sound production and vocal modification in dolphins.

 

We recently measured the energetic cost for both social sound and click production in dolphins and determined if these costs increased when the animals increased the loudness or other parameters of their sounds [4,5].  Two bottlenose dolphins were trained to rest and vocalize under a specialized dome which allowed us to measure their metabolic rates while making different kinds of sounds and while resting (Figure 1).  The dolphins also wore an underwater microphone (a hydrophone embedded in a suction cup) on their foreheads to keep track of vocal performance during trials. The amount of metabolic energy that the dolphins used increased as the total acoustic energy of the vocal bout increased regardless of the type of sound the dolphin made.  The results clearly demonstrate that higher vocal effort results in higher energetic cost to the signaler.

Holt fig 1

 

Figure 1 – A dolphin participating in a trial to measure metabolic rates during sound production.  Trials were conducted in Dr. Terrie Williams’ Mammalian Physiology lab at the University of California Santa Cruz.  All procedures were approved by the UC Santa Cruz Institutional Animal Care and Use Committee and conducted under US National Marine Fisheries Service permit No.13602.

 

These recent results allow us to compare metabolic costs of production of different sound types. However, the average total energy content of the sounds produced per trial was different depending on the dolphin subject and whether the dolphins were producing social sounds or clicks.  Since metabolic cost is dependent on vocal effort, metabolic cost comparisons across sound types need to be made for equal energy sound production.

 

The relationship between energetic cost and vocal effort for social sounds allowed us to predict metabolic costs of producing these sounds at the same sound energy as in click trials.  The results, shown in Figure 2, demonstrate that bottlenose dolphins produce clicks at a very small fraction of the metabolic cost of producing whistles of equal energy.  These findings are consistent with empirical observations demonstrating that considerably higher air pressure within the dolphin nasal passage is required to generate whistles compared to clicks [1].  This pressurized air is what powers sound production in dolphins and toothed whales [1] and mechanistically explains the observed difference in metabolic cost between the different sound types.

 

Holt fig 2

 

Figure 2 – Metabolic costs of producing social sounds and clicks of equal energy content within a dolphin subject.

 

Differences in metabolic costs of whistling versus clicking have implications for understanding the biological consequences of behavioral responses to ocean noise.  Across different sound types, metabolic costs depend on vocal effort.  Yet, overall costs of producing clicks are substantially lower than costs of producing whistles.  The results reported in this paper demonstrate that the biological consequences of vocal responses to noise can be quite different depending on the behavioral context of the animals affected, as well as the extent of the response.

 

  1. Au, W. W. L. The Sonar of Dolphins, New York: Springer-Verlag.
  2. Cranford, T. W., et al., Observation and analysis of sonar signal generation in the bottlenose dolphin (Tursiops truncatus): evidence for two sonar sources. Journal of Experimental Marine Biology and Ecology, 2011. 407: p. 81-96.
  3. Ophir, A. G., Schrader, S. B. and Gillooly, J. F., Energetic cost of calling: general constraints and species-specific differences. Journal of Evolutionary Biology, 2010. 23: p. 1564-1569.
  4. Noren, D. P., Holt, M. M., Dunkin, R. C. and Williams, T. M. The metabolic cost of communicative sound production in bottlenose dolphins (Tursiops truncatus). Journal of Experimental Biology, 2013. 216: 1624-1629.
  5. Holt, M. M., Noren, D. P., Dunkin, R. C. and Williams, T. M. Vocal performance affects metabolic rate in dolphins: implication for animals communicating in noisy environments. Journal of Experimental Biology, 2015. 218: 1647-1654.