2aBAa7 – Ultrasonic “Soft Touch” for Breast Cancer Diagnosis – Mahdi Bayat

2aBAa7 – Ultrasonic “Soft Touch” for Breast Cancer Diagnosis – Mahdi Bayat

Ultrasonic “Soft Touch” for Breast Cancer Diagnosis

 

Mahdi Bayat – bayat.mahdi@mayo.edu

Alireza Nabavizadeh- nabavizadehrafsanjani.alireza@mayo.edu

Viksit Kumar- kumar.viksit@mayo.edu

Adriana Gregory- gregory.adriana@mayo.edu

Azra Aliza- alizad.azra@mayo.edu

Mostafa Fatemi- Fatemi.mostafa@mayo.edu

 

Mayo Clinic College of Medicine
200 First St SW
Rochester, MN 55905

 

Michael Insana- mfi@illinois.edu

University of Illinois at Urbana-Champaign
Department of Bioengineering
1270 DCL, MC-278
1304 Springfield Avenue
Urbana, IL 61801

 

Popular version of paper 2aBAa7, “Differentiation of breast lesions based on viscoelasticity response at sub-Hertz frequencies”

Presented Tuesday Morning, May 24, 2016, 9:30 AM, Snowbird/Brighton room

171st ASA Meeting, Salt Lake City

 

 

Breast cancer remains the first cause of death among American women under the age of 60. Although modern imaging technologies, such as enhanced mammography (tomosynthesis), MRI and ultrasound, can visualize a suspicious mass in breast, it often remains unclear whether the detected mass is cancerous or non-cancerous until a biopsy is performed.

Despite high sensitivity for detecting lesions, no imaging modality alone has yet been able to determine the type of all abnormalities with high confidence. For this reason most patients with suspicious masses, even those with very small likelihood of a cancer, opt in to undergo a costly and painful biopsy.

It is long believed that cancerous tumors grow in the form of stiff masses that, if found to be superficial enough, can be identified by palpation. The feeling of hardness under palpation is directly related to the tissue’s tendency to deform upon compression.  Elastography, which has emerged as a branch of ultrasound, aims at capturing tissue stiffness by relating the amount of tissue deformation under a compression to its stiffness. While this technique has shown promising results in identifying some types of breast lesions, the diversity of breast cancer types leaves doubt whether stiffness alone is the best discriminator for diagnostic purposes.

Studies have shown that tissues subjected to a sudden external force do not deform instantly, rather they deform gradually over a period of time. Tissue deformation rate reveals another important aspect of its mechanical property known as viscoelasticity. This is the main material feature that, for example, makes a piece of memory foam to feel differently from a block of rubber under the touch. Similar material feature can be used to explore mechanical properties of different types of tissue. In breast masses, studies have shown that biological pathways leading to different breast masses are quite different. While in benign lesions an increase in a protein-based component can potentially increase its viscosity, hence a slower deformation rate compared to normal tissue, the opposite trend occurs in malignant tumors.

In this study, we report on using an ultrasound technique that enables capturing the deformation rate in breast tissue. We studied 43 breast masses in 42 patients and observed that a factor based on the deformation rate was significantly different in benign and malignant lesions (Fig. 1).

The results of this study promise a new imaging biomarker for diagnosis of the breast masses. If such technique proves to be of high accuracy in a large pool of patients, then this technology can be integrated into breast examination procedures to improve the accuracy of diagnosis, reduce unnecessary biopsies, and help detecting cancerous tumors early on

 

Figure 1 Error bar chart for benign and malignant

Figure1- Distribution of relative deformation rates for malignant and benign breast lesions. A significantly different relative deformation rates can be observed in the two groups, thus allowing differentiation of such lesions.

 

3aBA5 – Fabricating Blood Vessels with Ultrasound – Diane Dalecki, Ph.D., Eric S. Comeau, M.S., Denise C. Hocking, Ph.D.

3aBA5 – Fabricating Blood Vessels with Ultrasound – Diane Dalecki, Ph.D., Eric S. Comeau, M.S., Denise C. Hocking, Ph.D.

Fabricating Blood Vessels with Ultrasound

Diane Dalecki, Ph.D.
Eric S. Comeau, M.S.
Denise C. Hocking, Ph.D.
Rochester Center for Biomedical Ultrasound
University of Rochester
Rochester, NY 14627

Popular version of paper 3aBA5, “Applications of acoustic radiation force for microvascular tissue engineering”
Presented Wednesday morning May 20, 9:25 AM, in room Kings 2
169th ASA Meeting, Pittsburgh

Tissue engineering is the field of science dedicated to fabricating artificial tissues and organs that can be made available for patients in need of organ transplantation or tissue reconstructive surgery. Tissue engineers have successfully fabricated relatively thin tissues, such as skin substitutes, that can receive nutrients and oxygen by simple diffusion. However, recreating larger and/or more complex tissues and organs will require developing methods to fabricate functional microvascular networks to bring nutrients to all areas of the tissue for survival.

In the laboratories of Diane Dalecki, Ph.D. and Denise C. Hocking, Ph.D., research is underway to develop new ultrasound technologies to control and enhance the fabrication of artificial tissues1. Ultrasound fields are sound fields at frequencies higher than humans can hear (i.e., > 20 kHz). Dalecki and Hocking have developed a technology that uses a particular type of ultrasound field, called an ultrasound standing wave field, as a tool to non-invasively engineer complex spatial patterns of cells2 and fabricate microvessel networks3,4 within artificial tissue constructs.

When a solution of collagen and cells is exposed to an ultrasound standing wave field, the forces associated with the field lead to the alignment of the cells into planar bands (Figure 1). The distance between the bands of cells is controlled by the ultrasound frequency, and the density of cells within each band is controlled by the intensity of the sound field. The collagen polymerizes into a solid gel during the ultrasound exposure, thereby maintaining the spatial organization of the cells after the ultrasound is turned off. More complex patterning can be achieved by use of more than one ultrasound transducer.

Dalecki-1-ASA

Figure 1. Acoustic-patterning of microparticles (dark bands) using an ultrasound standing wave field. Distance between planar bands is 750 µm. Scale bar = 100 μm

An exciting application of this technology involves the fabrication of microvascular networks within artificial tissue constructs. Specifically, acoustic-patterning of endothelial cells into planar bands within collagen hydrogels leads to the rapid development of microvessel networks throughout the entire volume of the hydrogel. Interestingly, the structure of the resultant microvessel network can be controlled by choice of the ultrasound exposure parameters. As shown in Figure 2, ultrasound standing wave fields can be employed to fabricate microvessel networks with different physiologically relevant morphologies, including capillary-like networks (left panel), aligned non-branching vessels (center panel) or aligned vessels with hierarchically branching microvessels. Ultrasound fields provide an ideal technology for microvascular engineering; the technology is rapid, noninvasive, can be broadly applied to many types of cells and hydrogels, and can be adapted to commercial fabrication processes.

To learn more about this research, please view this informative video (https://www.youtube.com/watch?v=ZL-cx21SGn4).

Dalecki-2-ASA
Figure 2. Ultrasound-fabricated microvessel networks within collagen hydrogels. The ultrasound pressure amplitude used for initial patterning determines the final microvessel morphology, which can resemble torturous capillary-like networks (left panel), aligned non-branching vessels (center panel) or aligned vessels with hierarchically branching microvessels. Scale bars = 100 μm.

References:

[1] Dalecki D, Hocking DC. Ultrasound technologies for biomaterials fabrication and imaging. Annals of Biomedical Engineering 43:747-761; 2015.

[2] Garvin KA, Hocking DC, Dalecki D. Controlling the spatial organization of cells and extracellular matrix proteins in engineered tissues using ultrasound standing wave fields. Ultrasound Med. Biol. 36:1919-1932; 2010.

[3] Garvin KA, Dalecki D, Hocking DC. Vascularization of three-dimensional collagen hydrogels using ultrasound standing wave fields. Ultrasound Med. Biol. 37:1853-1864; 2011.

[4] Garvin KA, Dalecki D, Youssefhussien M, Helguera M, Hocking DC. Spatial patterning of endothelial cells and vascular network formation using ultrasound standing wave fields. J. Acoust. Soc. Am. 134:1483-1490; 2013.