Using ultrasound as an antibody in Alzheimer’s and as a drug dose enhancer in cancer patients

Elisa Konofagou – ek2191@columbia.edu

Columbia University, 1210 Amsterdam Ave, New York, New York, 10027-7003, United States

Popular version of 2aBAa1 – Neuronavigated focused ultrasound for clinical bbb opening in alzheimer’s and brain cancer patients
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018295

Ultrasound is widely known as an imaging modality in obstetrics and cardiology as well as several other applications but less known regarding its therapeutic effects despite its recent approvals in the clinic for ablation of prostate cancer and essential tremors. In the studies presented, we demonstrate that focused ultrasound (FUS) can be used in conjunction with microbubbles to open the blood-brain barrier (BBB) through the intact scalp of Alzheimer’s and pediatric tumor patients. The BBB is the main defense of the brain against toxic molecules but also prevents drugs from treating brain disease. In the case of Alzheimer’s, we demonstrate for the first time that the BBB opening resulting from FUS in the prefrontal cortex acts as an antibody in the brain. BBB opening results into a beneficial immune response in the brain that significantly reduces the beta amyloid in the region where ultrasound opened the blood-brain barrier. This was shown in 5 patients with Alzheimer’s.

In the case of the pediatric tumor patients, we aimed into the stem, which is a critical region between the spinal cord and the brain. The tumors in the pediatric patients are gliomas that grow in the stem where critical nerve fibers run through and they are therefore inoperable. We showed for the first time that BBB opening can be repeatedly induced with FUS in conjunction with microbubbles safely and efficiently in patients with pediatric glioma tumors in the stem. In this case, we used FUS in conjunction with a drug that, when crossing the blood-brain barrier, increases its efficiency. The patients reported smoother limb movement after treatment with the drug potentially acting more potently on the tumor.

It was concluded that ultrasound can safely open the blood-brain barrier in both patients as young as 6 years old to as old as 83 years old completely noninvasively and more importantly reduce the disease pathology and/or symptoms. The system is thus versatile, does not require a dedicated MR system or to be performed in the MR scanner unlike other systems and the entire procedure can last less than 30 min from start to finish. Ultrasound can thus be used alone or in conjunction with a drug in order to change the current dire landscape of treatment of brain disease. Finally, we show how Alzheimer’s beta amyloid and tau are excreted from the brain and can be detected with a simple blood test.

Whispers from the Deep Sea: The Subtle Sounds of Hydrothermal Vents #ASA183

Whispers from the Deep Sea: The Subtle Sounds of Hydrothermal Vents #ASA183

Passive acoustic monitoring can characterize the sounds of hydrothermal vents, informing the environmental impacts of deep-sea mining and possibly locating similar sites throughout the solar system.

Media Contact:
Ashley Piccone
AIP Media
301-209-3090
media@aip.org

NASHVILLE, Tenn., Dec. 8, 2022 – Deep-sea hydrothermal vents host unique life that survives without sunlight, and they play a significant role in the cycle of heat, water, and chemicals within the ocean. But long-term monitoring of these vents is difficult because of their hot and caustic characteristics.

Ocean Networks Canada’s hydrophone and the Deep Acoustic Lander are used to monitor hydrothermal vents. Credit: Ocean Networks Canada

In his presentation, “The soundscape of two deep-sea hydrothermal vent sites,” Brendan Smith will describe how hydrophones can listen to the sounds of these vents, informing the environmental impacts of deep-sea mining and assisting with interplanetary exploration. The 183rd Meeting of the Acoustical Society of America will run Dec. 5-9 at the Grand Hyatt Nashville Hotel, and Smith’s session will take place on Dec. 8 at 9:30 a.m. Eastern U.S. in the North Coast A room.

Smith and his PhD supervisor Dr. David Barclay used hydrophones operated by Ocean Networks Canada in the Pacific Ocean and the European Multidisciplinary Seafloor and water column Observatory in the Atlantic Ocean to monitor two vents on the seafloor. Barclay also developed a custom autonomous device that helps determine the source of a sound, which Smith will deploy during a research cruise in 2023. Both are noninvasive ways to study the vents, and both are sustainable in the long term because they work from a safe distance.

Hydrothermal vents produce subtle sounds near the low end of the human hearing range. These noises fluctuate with the flow and temperature of the vent, and biological sources nearby can also contribute to the soundscape.

“Ultimately, our objective is to find the relationship between vent parameters such as flow rate or temperature and the sound they produce,” Smith said. “It is also important to understand all of the contributions to the soundscape at hydrothermal vents, not just the sounds produced by the vents themselves. Surface weather, marine life, and anthropogenic sources such as shipping all contribute to the soundscape.”

Proposed industrial use of hydrothermal vents through deep-sea mining would alter their soundscape and impact the surrounding organisms. Understanding the acoustics in the vicinity could help predict and prevent environmental impacts.

“Characterizing the sound produced by hydrothermal vents can also help us locate new, unexplored vent sites from a long distance,” said Smith. “This could be used to help find new vent sites on Earth, but also elsewhere in the solar system, such as Saturn’s moon Titan or Jupiter’s moon Europa.”

———————– MORE MEETING INFORMATION ———————–
Main meeting website: https://acousticalsociety.org/asa-meetings/
Technical program: https://eppro02.ativ.me/web/planner.php?id=ASAFALL22&proof=true

ASA PRESS ROOM
In the coming weeks, ASA’s Press Room will be updated with newsworthy stories and the press conference schedule at https://acoustics.org/asa-press-room/.

LAY LANGUAGE PAPERS
ASA will also share dozens of lay language papers about topics covered at the conference. Lay language papers are 300 to 500 word summaries of presentations written by scientists for a general audience. They will be accompanied by photos, audio, and video. Learn more at https://acoustics.org/lay-language-papers/.

PRESS REGISTRATION
ASA will grant free registration to credentialed and professional freelance journalists. If you are a reporter and would like to attend the meeting or virtual press conferences, contact AIP Media Services at media@aip.org.  For urgent requests, AIP staff can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

Snap, Crackle, Pop: Healthy Coral Reefs Brimming with Noise

Snap, Crackle, Pop: Healthy Coral Reefs Brimming with Noise

Monitoring their soundscape can provide a long term, nonintrusive, inexpensive method for tracking the state of reefs around the world

Media Contact:
Larry Frum
AIP Media
301-209-3090
media@aip.org

DENVER, May 25, 2022 – A healthy coral reef is loud. Like a busy city, the infrastructure leads to more organisms and activity, and more background noise. Every time an invertebrate drags their hard shell over the coral, or a fish takes a bite of its food, they add to the soundscape.

Vocal fish, whales, and dolphins occasionally interrupt with louder grunts and calls. Altogether, the hundreds of thousands of animals living in the reef sound like static on the radio, or the snap, crackle, and pop of a bowl of Rice Krispies as you pour milk on the cereal, when the coral reef is healthy. The sound changes for reefs that are not healthy, becoming quieter and less diverse.

Lauren Freeman, of the U.S. Naval Undersea Warfare Center Newport, will present experiment results of passively acoustically monitoring coral reefs to get a snapshot of their health at the 182nd Meeting of the Acoustical Society of America at the Sheraton Denver Downtown Hotel. The presentation, “Coral Reef & Temperate Coastal Soundscape Features Evident in Directional and Omnidirectional Passive Acoustic Time Series,” will take place May 25 at 11:35 a.m. Eastern U.S.

Passive acoustic monitoring of coral soundscapes offers a long-term, nonintrusive, and inexpensive way to track the state of reefs around the world, which are threatened by humanity via fishing, pollution, and climate change.
Compared to healthy reefs, degraded coral communities don’t have as rich or diverse of a soundscape. There tend to be fewer fish calls and more high frequency noise from algae photosynthesizing and releasing bubbles of oxygen, which ring out as they rise through the water.

“There is a natural competition between corals and macroalgae on all coral reefs. In most cases with a dying or degraded reef, the macroalgae is winning and covers a lot more of the surface,” said Freeman. “On a pristine reef, you would see very little macroalgae, and a lot of herbivorous fish that help eat the macroalgae.”

Freeman and her team deployed an acoustic array to monitor reefs off the coast of Hawaii. They compared these results to similar data from Bermuda and New England. Interestingly, Hawaii and Bermuda both showed a characteristic reef evening chorus, where the sound levels increased immediately prior to sunset. The New England reef underwent similar changes near dusk.

“Almost every time I conduct an experiment, we learn more about the complexities and intricacies of ambient biological soundscapes,” said Freeman. “It’s so exciting to continue to discover more about ocean ecosystems.”

———————– MORE MEETING INFORMATION ———————–
USEFUL LINKS
Main meeting website: https://acousticalsociety.org/asa-meetings/
Technical program: https://eventpilotadmin.com/web/planner.php?id=ASASPRING22
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM
In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at https://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at media@aip.org. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

Food Paradox Answer Shows How Ocean Life Survives

Food Paradox Answer Shows How Ocean Life Survives

Acoustic tools reveal hotspots of ocean life in scattered places

Media Contact:
Larry Frum
AIP Media
301-209-3090
media@aip.org

SEATTLE, December 1, 2021 – Ocean predators cannot survive on average concentrations of food found in the water. Instead, they survive by exploiting small patches of food-rich areas peppered throughout the world’s waterways.

During the 181st Meeting of the Acoustical Society of America, which will be held Nov. 29 to Dec. 3, Kelly Benoit-Bird, from the Monterey Bay Aquarium Research Institute, will discuss how sonar or active acoustics can be used to interpret and indicate biological hotspots of ocean life. The talk, “A Sound Resolution to the Food Paradox in the Sea,” will take place Wednesday, Dec. 1, at 4:05 p.m. Eastern U.S.

Using active acoustics, where a sound pulse is created and resulting echoes are interpreted, the researchers found the ocean is widely populated with narrow hotspots of activity. Traditionally, these hotspots are missed with conventional sampling tools, but locating them can provide dynamic layered maps of ocean life.

“We’re using systems much like those used to find the depth of the ocean, but instead of interpreting echoes from the seafloor, we’re using more sensitive systems that allow us to map layers of life in the water,” said Benoit-Bird. “What we’ve found is that animals of all different sizes, from millimeter long plankton to large predators, are unevenly distributed, and this variation is really important to how life in the ocean functions.”

The findings signify ocean food and biota as patchy, varying with depth and location, suggesting animals must find and exploit small scale aggregations of resources.

The Lasker food paradox proposed in the 1970s found laboratory animals fed the average concentration of ocean food did not survive, but ocean-dwelling animals in the wild did. The paradox is reconciled by Benoit-Bird’s findings, demonstrating animals do not survive on average food concentrations but are well-adapted to locating and capitalizing on patches of resources, and reducing their total energy expenditure to hunt.
“For example, if a bucket’s worth of popcorn was spread out evenly throughout the volume of a room, and you had to fly around to capture each kernel, you would spend a lot of energy searching and it would be hard to get enough to be full,” Benoit-Bird said. “If instead, the popcorn was all grouped together, the popcorn would be a much more satisfying snack. The amount of popcorn is the same but changing how it is grouped determines whether you end up with a full belly.

“Acoustic tools provide the high spatial resolution and long duration sampling to explore the processes that drive organismal interactions in the ocean. We must understand not only how many animals are in the ocean, but how they are distributed, if we are to effectively manage our living marine resources.”

———————– MORE MEETING INFORMATION ———————–
USEFUL LINKS
Main meeting website: https://acousticalsociety.org/asa-meetings/
Technical program: https://eventpilotadmin.com/web/planner.php?id=ASAFALL21
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM
In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at https://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at media@aip.org. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

2pAO6 – Listening to Hydrothermal Vents

Brendan Smith – Brendan.Smith@dal.ca
Dr. David Barclay – David.Barclay@dal.ca
Dalhousie University
Department of Oceanography
Life Sciences Centre, 1355 Oxford St.
PO Box 15000
Halifax, NS
B3H 4R2, Canada

Popular version of 2pAO6 – Passive acoustic monitoring of hydrothermal vents at the endeavour hydrothermal vent field
Presented Tuesday morning, November 30, 2021
181st ASA Meeting
Click here to read the abstract

Long-term monitoring of hydrothermal vents is challenging due to their high temperature and caustic fluid properties. Passive acoustics provides a sustained vent monitoring method from a safe distance. Long-term acoustic records and hydrophone arrays may be used to investigate the sound producing mechanisms of hydrothermal vents. The initial results from an analysis of 6-months of single hydrophone acoustic data collected at the Main Endeavour Hydrothermal Vent field in the North-East Pacific, and a short-term array deployment at the same location demonstrate features of the vent’s signature.
The monitoring hydrophone, operated by Ocean Networks Canada (ONC) is within 10 meters of a black smoker hydrothermal vent. During a servicing cruise in the fall of 2021, ONC deployed the Deep Acoustic Lander (DAL), an autonomous acoustic recorder carrying a four-channel hydrophone array, shown in Fig. 1. The difference in received signals across the array can be exploited to identify hydrothermal vent generated noise and separate it from possible interferences, such as flow noise, wind generated wave noise, and ship noise.

 

The Deep Acoustic Lander being deployed by Ocean Networks Canada using an ROV near a black smoker hydrothermal vent [Credit: Ocean Networks Canada]”
Despite the vigorous, high-temperature flow seen from black smoker chimneys, they do not produce loud acoustic signals relative to the ocean’s background noise. However, several acoustic source mechanisms have been proposed to generate both tonal and broadband sounds (Lighthill, 1952; Little, 1988; Crone et al., 2006).

Fig. 2 compares audio spectra and vertical coherence from the DAL hydrophone array deployed at an initial standoff distance of 200 m, then subsequently repositioned to within 3 m from the vent outlet. Increased broadband infrasonic (1 – 10 Hz) and low frequency (100 – 200 Hz) energy is observed when the sensor is positioned near the vent, and tonal components at 4, 5, 7, 8, and 9 Hz are observed in the spectra. A reduction in coherence in the infrasonic band indicates flow noise while the coherent tonals may be generated by the vibrating vent structure.


Caption: “Figure 2: (a) Acoustic power spectra, (b) real and (c) imaginary vertical coherence <3m (solid) and >200m (dashed) from vent”
The outflow rate and temperature of hydrothermal vent fluid can modulate due to tidal variations in overburden pressure, causing a correlated variation in sound level (Barreyre & Sohn, 2016; Xu & Di Iorio, 2012; Larson et al., 2007; Crone & Wilcock, 2005; Crone et al., 2006). Tidal-period variations in sound level over 6 months of audio data were observed by carrying out a spectral analysis of power spectral density levels, shown in Fig. 3. Variations in sound level with the diurnal and semidiurnal tidal components are seen at infrasonic (1 – 10 Hz) and low (100 – 400 Hz) frequencies. The semidiurnal variability below 10 Hz is attributed to flow noise (Fig. 2) due to either tidal currents or vent plume entrainment. Variability between 100-400 Hz, above the flow noise regime, is generated by vent plume outflow and mixing.

 


Caption: “Figure 3: Periodic variability of power spectral density”
Combining the long-term records with data recorded on the Deep Acoustic Lander’s hydrophone array will allow the relationships between physical forcing and hydrothermal vent sound generation mechanisms and acoustic signatures to be further determined.

References
Barreyre, T., and Sohn, R. A. (2016). Poroelastic response of mid-ocean ridge hydrothermal systems to ocean tidal loading: Implications for shallow permeability structure. Geophys. Res. Lett., 43, 1660-1668, doi:10.1002/2015GL066479
Crone, T. J., and Wilcock, W. S. D. (2005). Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems. Geochem. Geophys. Geosyst., 6, Q07001, doi:10.1029/2004GC00905
Crone, T. J., Wilcock, W. S. D., Barclay, A. H., Parsons, J. D. (2006). The sound generated by mid-ocean ridge black smoker hydrothermal vents. PLoS ONE, 1(1): e133, doi:10.1371/journal.pone.0000133
Larson, B. I., Olson, E. J., Lilley, M.D. (2007). In situ measurement of dissolved chloride in high temperature hydrothermal fluids. Geochimica et Cosmochimica Acta, 71, 2510-2523, doi:10.1016/j.gca.2007.02.013
Lighthill, M. J. (1952). On sound generated aerodynamically I. General theory. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 211(1107), 564-587, doi:10.1098/rspa.1952.0060
Little, S. A. (1988). Fluid flow and sound generation at hydrothermal vents. PhD thesis, Massachusetts Institute of Technology and Woods Hole Oceanographic Institution.
Xu, G., and Di Iorio, D. (2012). Deep sea hydrothermal plumes and their interaction with oscillatory flows. Geochem. Geophys. Geosyst., 13, Q0AJ01, doi:10.1029/2012GC004188

2aAO5 – Tracking natural hydrocarbons gas flow over the course of a year

Alexandra M Padilla – apadilla@ccom.unh.edu
Thomas C Weber – weber@ccom.unh.edu
University of New Hampshire
24 Colovos Road
Durham, NH, 03824

Frank Kinnaman – frank_kinnaman@ucsb.edu
David L Valentine – valentine@ucsb.edu
University of California – Santa Barbara
Webb Hall
Santa Barbara, CA, 93106

Popular version of paper 2aAO5
Presented Wednesday morning, June 9, 2021
180th ASA Meeting, Acoustics in Focus

Researchers have been studying the release of methane, a greenhouse gas, in the form of bubbles from different regions of the ocean’s seafloor for decades to understand its impact on global climate change and ocean acidification (Kessler, 2014). One region, the Coal Oil Point (COP) seep field, is a well-studied natural hydrocarbon (e.g., oil droplets and methane gas bubbles) seep site, known for its prolific hydrocarbon activity (Figure 1; Hornafius et al., 1999). Researchers that have studied the COP seep field have observed both spatial and temporal changes in the gas flow in the area, that has been thought to be linked to external processes such as tides (Boles et al., 2001) and offshore oil production from oil rigs within the seep field (Quigley et al., 1999).

Figure 1. Video of methane gas bubbles rising through the ocean’s water column within the COP seep field.

In recent years, an oil platform within the COP seep field, known as Platform Holly, has become inactive and decommissioned, and there has been a resurgence in natural hydrocarbon seepage activity in the vicinity of the platform based on anecdotal observations. This led a group  from UNH and UCSB to map the hydrocarbon activity in the COP seep field (Padilla et al., 2019), where we were able to identify a large patch of high seepage activity near Platform Holly (Figure 2). The shut-in at Platform Holly provided us with the opportunity to deploy a long-term acoustic monitoring system to study both the spatial and temporal changes in hydrocarbon gas flow in the region and to assess how it is affected by external processes.

Figure 2. a) Acoustic map of natural hydrocarbon activity within the COP seep field (Padilla et al., 2019). b) Zoomed in acoustic map near Platform Holly. c) Image of Platform Holly.

We mounted a split-beam echosounder, at a depth of approximately 8 m  below the sea surface, on one of Platform Holly’s cross beams. The echosounder was programmed to emit an acoustic signal every 10 seconds and has been collecting acoustic data since early September 2019, providing us with more than a year’s worth of acoustic data to process and analyze (Figure 3). The acoustic signal emitted by the echosounder interacts with scatterers in the water column, mostly methane gas bubbles in our case, and measures the target strength of these scatterers. The target strength represents how strong a scatterer scatters sound back towards the echosounder (for more information of acoustics and gas bubbles, see article by Weber, 2016).

Figure 3. Acoustic observations of hydrocarbon activity (ranges between 10-140 m) west of Platform Holly as a function of range from the echosounder and time. Warm and cool colors represent high and low target strength, which correspond, roughly, to high and low seepage activity, respectively.

The acoustic measurements, shown in Figure 3, indicate that there are temporal changes in the location and the target strength of the hydrocarbons in the region; however, it does not tell us how the amount of gas flow of these hydrocarbons is changing with time. Exploiting the split-beam capability of the echosounder, allowed us to track the position of scatterers in the acoustic data, so we can identify and classify different hydrocarbon structure types (Figure 4) and use the appropriate mathematical equations to convert acoustic measurements into gas flow. This will allow us to track changes in gas flow of hydrocarbons near Platform Holly and learn more about how gas flow is affected by external processing, like tides, storms, and earthquakes.

Figure 4. a) Acoustic observations of hydrocarbon activity. b) Acoustic classification map of different hydrocarbon structure types.