Locating the lives of blue whales with sound informs conservation

John Ryan – ryjo@mbari.org

Monterey Bay Aquarium Research Institute, Moss Landing, CA, 95039, United States

Popular version of 4aUW7 – Wind-driven movement ecology of blue whales detected by acoustic vector sensing
Presented at the 188th ASA Meeting
Read the abstract at https://eppro01.ativ.me/appinfo.php?page=Session&project=ASAICA25&id=3866920&server=eppro01.ativ.me

–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–

A technology that captures multiple dimensions of underwater sound is revealing how blue whales live, thereby informing whale conservation.

The most massive animal ever to evolve on Earth, the blue whale, needs a lot of food. Finding that food in a vast foraging habitat is challenging, and these giants must travel far and wide in search of it. The searching that leads them to life-sustaining nutrition can also lead them to a life-ending collision with a massive fast-moving ship. To support the recovery of this endangered species, we must understand where and how the whales live, and how human activities intersect with whale lives.

Toward better understanding and protecting blue whales in the California Current ecosystem, an interdisciplinary team of scientists is applying a technology called an acoustic vector sensor. Sitting just above the seafloor, this technology receives the powerful sounds produced by blue whales and quantifies changes in both pressure and particle motion that are caused by the sound waves. The pressure signal reveals the type of sound produced. The particle motion signal points to where the sound originated, thereby providing spatial information on the whales.

blue whalesA blue whale in the California Current ecosystem. Image Credit: Goldbogen Lab of Stanford University / Duke Marine Robotics and Remote Sensing Lab; NMFS Permit 16111.

For blue whales, it is all about the thrill of the krill. Krill are small-bodied crustaceans that can form massive swarms. Blue whales only eat krill, and they locate swarms to consume krill by the millions (would that be krillions?). Krill form dense swarms in association with cold plumes of water that result from a wind-driven circulation called upwelling. Sensors riding on the backs of blue whales reveal that the whales can track cold plumes precisely and persistently when they are foraging.

The close relationships between upwelling and blue whale movements motivates the hypothesis that the whales move farther offshore when upwelling habitat expands farther offshore, as occurs during years with stronger wind-driven upwelling. We tested this hypothesis by tracking upwelling conditions and blue whale locations over a three-year period. As upwelling doubled over the study period, the percentage of blue whale calls originating from offshore habitat also nearly doubled. A shift in habitat occupancy offshore, where the shipping lanes exist, also brings higher risk of fatal collisions with ships.

However, there is good news for blue whales and other whale species in this region. Reducing ship speeds can greatly reduce the risk of ship-whale collisions. An innovative partnership, Protecting Blue Whales and Blue Skies, has been fostering voluntary speed reductions for large vessels over the last decade. This program has expanded to cover a great stretch of the California coast, and the growing participation of shipping companies is a powerful and welcome contribution to whale conservation.