Christy Holland – hollanck@ucmail.uc.edu

Internal Medicine, Division of Cardiovascular Health and Disease and Biomedical Engineering
University of Cincinnati
Cincinnati, Ohio 45267
United States

Kevin Haworth,
Internal Medicine, Division of Cardiovascular Health and Disease, Biomedical Engineering, and Pediatrics
University of Cincinnati
Cincinnati, OH 45267 USA

Popular version of 2aBAa5 – Bubble, bubble, sonic trouble: Cavitation dose and therapeutic close
Presented at the 188th ASA Meeting
Read the abstract at https://eppro01.ativ.me//web/index.php?page=Session&project=ASAICA25&id=3867184

–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–

Imagine doctors activating tiny, drug-delivering bubbles in the body via a computer — almost like playing a video game — to treat life-threatening conditions. This futuristic approach is becoming a reality, thanks to advances in ultrasound technology and biomedical acoustics.

Cavitation is the formation and movement of tiny gas bubbles when ultrasound waves pass through the body. While cavitation might sound like a side effect from ultrasound, scientists have found a way to harness effervescence to improve medication delivery.

Doctors can use cavitation to help medications reach their targets faster and more effectively. One example is tissue plasminogen activator (tPA), a drug used to dissolve blood clots. When paired with cavitation, tPA can penetrate more deeply into clots. That makes it particularly useful in treating serious conditions, including blood clots in the leg known as deep vein thrombosis and pulmonary embolism, a potentially life-threatening blockage in the lungs.

The challenge lies in finding the right amount of cavitation. Too little bubble activity may have little effect, while too much could damage the surrounding blood vessel. So, medical researchers are working to define a safe and effective “cavitation dose” — the ideal amount of bubble activity to enhance treatment, much like a doctor prescribes a certain dose of medicine for a patient to take.

To help strike this balance, scientists are using a new imaging tool to visualize cavitation as it happens. First, a catheter with tiny built-in ultrasound sources is inserted into a blood vessel to generate cavitation. Then, an ultrasound transducer — similar to one used in fetal imaging — is specially programmed to capture images of cavitation around the treatment area. This view helps doctors understand where bubbles are and how they’re vibrating, so they can adjust the treatment in real time.

The bubbles themselves are made of octafluoropropane (OFP)  — a safe, colorless gas often used in diagnostic ultrasound imaging of the heart and liver. Thanks to a technique called passive cavitation imaging (PCI), researchers can now track cavitation without interfering with the treatment itself.

Leading this innovative work are Kevin Haworth, PhD, and Christy Holland, PhD, both from the University of Cincinnati College of Medicine. Haworth is principal investigator of the Biomedical Ultrasonics and Cavitation Laboratory, while Holland directs the Image-Guided Ultrasound Therapeutic Laboratories, as well as the Center for Cardiovascular Research. By visualizing and guiding these tiny bubbles, doctors may soon be able to deliver treatments with greater precision — helping patients recover faster and more safely than ever before.

Share This