Melville, New York, April 21, 2004
Birds chirping, jackhammers rattling, steel drums playing, trains screeching, sopranos singing---these are some of the sounds of New York City in May. Researchers from around the world will discuss some of these sounds, and many others, at the 75th Anniversary Meeting of the Acoustical Society of America (ASA) from May 24-28 in New York City. All technical sessions will be held at the Sheraton New York Hotel and Towers, 811 7th Avenue (on 53rd Street), 212-581-1000. More than 1200 papers will be presented. No papers will be presented on Wednesday, May 26, the day that ASA celebrates its anniversary with special events, which are described at the end of this news release.
Acoustics is the science of sound and its applications. The ASA is the largest scientific organization in the United States devoted to acoustics, with over 7000 members worldwide.
MUSICAL INSTRUMENTS OF THE LAST 100 YEARS EAREDNESS: EVIDENCE FOR A PREFERRED EAR A NEW AUDITORY BRAINSTEM IMPLANT LISTENING TO RECORDS BY LOOKING AT THEM NEW YORK SOUNDSCAPES TRANSFORMING ORDINARY OBJECTS INTO TOUCH-SENSITIVE DEVICES FROG STUTTERS, WHALE GUNSHOTS, AND VIBRATING LOBSTERS ZAPPING DEEP TUMORS WITH SOUND NOISE AND CHILDREN CITY SOUNDSCAPES MEDICAL ULTRASOUND ENTERS NEW TERRITORY LISTENING TO ACOUSTICS IN CONCERT HALLS HUMMING CLEARS THE SINUSES ADVANCES IN ACOUSTICAL LANDMINE DETECTORS BETTER OPERA HALLS WITH COMPUTERS ACOUSTIC TV AND TIME-REVERSED COMMUNICATIONS These items were prepared by Ben Stein, James Riordon, Martha Heil, Phil Schewe, and Emilie Lorditch of the American Institute of Physics in cooperation with the Acoustical Society of America.
Paul Wheeler of Utah State University (paul.wheeler@ece.usu.edu) will present a brief history of the technical development of musical instruments during the 20th century. Wheeler's history starts with early electronic instruments, such as the Theremin, the device that produces otherworldly tones for songs such as the Beach Boys' "Good Vibrations." His history progresses to the development of electronic organs, synthesizers, and computer music (Paper 2aMUb1). Musical instruments have mutated into many different forms, since designers of electronic instruments can now separate ergonomics from physical sound production. For example, musicians can wave virtual batons that trigger electronic sounds or blow into wind controllers that play synthesizers (see 2aMUb2). Joseph A. Paradiso of the MIT Media Lab (joep@media.mit.edu) will review the status of electronic music controllers and present various examples of new musical interfaces developed at the MIT Media Lab (2aMUb3). On the acoustical side, Edward Kottick of the University of Iowa (edward-kottick@uiowa.edu) will discuss the resurgence of the harpsichord, an instrument that was almost abandoned by musicians at the end of the 19th century as it was considered obsolete next to the piano (4pMU7).
Humans generally write with a preferred hand, and they read with a dominant eye. William Hartmann of Michigan State and his colleagues will present evidence for "earedness." In an experiment with 51 listeners, the researchers played a special stereo sound called the "Huggins pitch" (hear it at
One in 40,000 people in the US suffers from neurofibromatosis type II (NF2), a genetic condition in which benign tumors impinge upon auditory nerves. Doctors often remove the tumors, since there is a danger that they will encroach upon vital brain centers such as those that control breathing. Yet removing the growths usually severs both auditory nerves and causes profound deafness, which cannot be treated by any hearing aid or cochlear (inner-ear) implant. In a major development for the emerging field of "neuroprosthetics," researchers have designed the Penetrating Auditory Brainstem Implant (PABI). In this device, eight tiny electrodes are inserted directly into the auditory center of the brainstem, the structure at the base of the brain that is connected to the spinal cord. Designed by researchers at the House Ear Institute (HEI) in California and collaborators at Cochlear Corp. and the Huntington Medical Research Institutes in Pasadena, PABI is a followup to an earlier "auditory brainstem implant," introduced in 1979, in which electrodes are implanted only on the surface of the brainstem. The older ABIs stimulate the auditory brainstem directly and help users hear sounds, but they do not enable users to understand speech without lipreading. In contrast, the more sophisticated, deeply implanted PABI aims to give users the ability to detect tones and comprehend speech to a degree experienced by those who wear advanced cochlear implants. Bob Shannon of HEI will discuss results on the first patients who have received PABI (1aPP5; for more information, contact Christa Spieth Nuber, Media Relations, HEI, 213-273-8027, newsmedia@hei.org).
Using optical methods and digital image processing, Carl Haber and Vitaliy Fadeyev of Lawrence Berkeley National Laboratory (chhaber@lbl.gov), and their colleagues have developed a non-destructive, non-contact method for digitizing old mechanical recordings such as 78 rpm shellac discs and Edison cylinders. Measuring the undulations in the grooves of the record to obtain audio information, the technique can allow archivists to recover old records and cylinders without using a needle (2pMU4; also see
Many New York City musicians sweeten the urban soundscape by playing their instruments in train stations, parks, alleys, and overpasses. Alexander Case of Fermata Audio + Acoustics in New Hampshire (alex@fermata.biz) will discuss how these alternative spaces can enhance the acoustics of the performance (4pAA6).
Stefan Catheline of ESPCI in France (Stefan.catheline@espci.fr) and colleagues have come up with an idea for transforming all objects in a room into touch-sensitive, remote control devices, even if they don't run on electricity. The idea is the following: touch any object in a room, and an acoustic detector records the sound or vibration from a touch. Then, employing a scheme known as "time-reversed" acoustics, the detector sends a reversed version of the soundwave to the object. After sending soundwaves back and forth several times between source and detector, the system is able to pinpoint exactly where the object lies in the room. One can therefore create "virtual switches" that perform certain functions in response to touch. For example, touching a part of a desk may activate lights or switch on a computer. Technically, this process only requires an acoustic sensor or two and a very small amount of computer power (5aEA9). In another paper, Lanbo Liu of the USA Cold Regions Res. and Eng. Lab. (lanbo.liu@erdc.usace.army.mil) will describe how time-reversed acoustics might be used to locate objects, such as the source of an explosion, in a noisy outdoor urban environment (5aPAa5).
Different animal species use sound to attract mates in an unexpected variety of ways. Several papers show how sound can provide important clues into animal behavior-while also being strange or funny. Andrea Simmons (Andrea_Simmons@brown.edu) and Dianne Suggs (Dianne_Suggs@brown.edu) of Brown University have discovered a new vocalization in the male bullfrog called the "stutter" in which individual croaks sound as if they have split up into shorter parts. The researchers have found that the stutters, occurring during a series of individual croaks, may be used in the context of attracting female mates (1aAB9). Heidi J. Pye of the University of New Hampshire (hjpye@unh.edu) will describe how American lobsters produce buzzing vibrations when grasped. The tendency for larger lobsters to vibrate more consistently may suggest a role in mating behavior (2pAB6). Susan E. Parks of Cornell (sep6@cornell.edu) and her colleagues have discovered that North Atlantic right whales make a brief broadband sound, which the researchers term a "gunshot" signal because it sounds like a rifle being fired. The lone whales making this sound were all mature males, so the researchers have concluded that the gunshot signal serves as either an antagonistic sound directed toward other males, an advertisement signal to attract females, or a combination of the two (4aAB12). Other talks will focus on birds' sophisticated hearing skills, which compare favorably to those in humans (2aPP3); the unique acoustical capabilities of the donkey, which can produce significant sound during both inhalation and exhalation (2pAB4); and the little-studied sound-production traits of the hippo, which can make sounds both in air and underwater (4pAB7).
While medical ultrasound has shown success in treating tumors in such regions as the prostate and liver, it has not been able to treat deeply buried tumors---until now. Cyril Lafon of INSERM in France (lafon@lyon.inserm.fr) will describe new "interstitial" devices with specially placed flat ultrasound generators designed to destroy deep-seated tumors. "Clinical trials are now being performed for the thermal ablation of digestive tumors and preliminary results are extremely promising," he and his colleagues report (2aBB5). Jean-Luc Robert and Claude Cohen-Bacrie (claude.cohen-bacrie@philips.com) of Philips Electronics in New York will describe a promising ultrasound method for detecting microcalcifications in the breast (5aBB4).
Acousticians are working to raise awareness of the negative effects that noise can have on children. Prudence Allen of the University of Western Ontario (pallen@uwo.ca) will present a study on how noise affected the performance of children in grades 3-4 and 7-8 on standardized tests of oral reading, silent reading, and vocabulary. In the presence of noise, the older children exhibited reduced performance on the silent reading task (1aAA8). Bridget Shield of London South Bank University(shieldbm@lsbu.ac.uk) will present noise-level measurements inside and outside 170 London schools. One finding: "the higher noise levels in London are associated with the areas of greater social deprivation" (5aNS5). Alice Holmes of the University of Florida (aholmes@hp.ufl.edu) will review a series of studies on the prevalence of hearing loss and reported effects of hearing loss and tinnitus in adolescents and young adults (4pNSb6). On an encouraging note, Laura Warren (warr808@aol.com) and colleagues at Columbia College Chicago found that elementary-school-age students who expressed preferences for loud music are actually listening to the music at lower-than-expected levels. Therefore, many students may not be listening to music as loudly as cultural stereotypes would suggest (4aPP1)
According to the World Health Organization, noise is an increasing public health problem. It can create adverse effects ranging from hearing impairment to sleep disruption and performance degradation at work and school. Leslie Blomberg of the Noise Pollution Clearinghouse in Vermont (les@nonoise.org) will provide an overview the nature of noise in society (4pNSb1). Individual papers will assess the state of noise in Paris, Brazil, Japan, Mexico City, Berlin, Chicago, and numerous other places (sessions 5aNS and 5pNS). Giovanni Brambilla of the CNR-Institute of Acoustics in Italy (brambilla@idac.rm.cnr.it) will describe noise in Rome, which he refers to as an "old problem" dating to 45 B.C., when Roman city law (Lex Julia Municipalis) limited carriage traffic in the urban center to specific times (5aNS1). Acoustician Dan Raichel (draichel@eilarassociates.com) will discuss an "archaeological acoustics" approach to determine noise levels in cities of past centuries, by studying historical records and measuring noise sources such as the clopping of horses (5pNS3). Cay Hehner of the Technical University of Berlin (kskanda@mach.ut.tu-berlin.de) will discuss an idea for improving soundscapes with tax breaks (2aNS6).
The brain is arguably the final frontier for medical ultrasound. It's the most difficult part of the body in which to aim ultrasound: The skull causes ultrasound to bounce around drastically, making it very hard to focus at the desired location. However, the payoffs of brain ultrasound would be enormous: the ability to remove brain tumors without surgical incision or large amounts of ionizing radiation; the possibility of delivering drugs through the blood-brain-barrier; and the ability to detect brain injuries at the scene of an accident. Researchers will report progress in brain ultrasound in various papers, including 2aBB1 and 5aBB1. In the meantime, researchers are just beginning to explore medical ultrasound's potential to treat heart disorders. Sound can potentially remove diseased portions of the heart which occur in such conditions as hypertrophic cardiomyopathy, an excessive thickening of heart muscle. Researchers will describe experiments that have shown the feasibility of ultrasound treatments in the beating heart (2aBB10, 2aBB9, 2aBB2). Finally, Ronald H. Silverman of Weill Medical College of Cornell University in New York (ros2012@med.cornell.edu) and his colleagues have developed a series of very-high-frequency ultrasound instruments that can provide exceedingly detailed information on the eye. Their techniques have allowed them to obtain data on the entire cornea and determine the thickness of each corneal layer, as well as the surgically induced interface produced in LASIK, the most common form of laser eye surgery. In addition to catching surgically produced defects in the eye, the acoustical instruments can potentially detect eye tumors, cysts, foreign bodies, and other corneal problems (1aBB4).
At a special evening lecture (1eID1) concert hall expert Leo Beranek (beranekleo@ieee.org), a recent winner of the National Medal of Science, will discuss how architectural features affect the acoustics of symphonic music in a concert hall. Beranek will present a list of 58 halls ranked according to their acoustical quality based on interviews of music critics and conductors. Then, he will compare modern acoustical measurements of these halls with their rankings. Beranek will also speak at session 1pAAa, in which researchers explore the interaction between the visual and auditory aspects of the concert hall experience.
A recent study by Swedish researchers has suggested that humming may be helpful in avoiding sinusitis. Since the sinuses produce significant amounts of nitrous oxide (NO) gas, the researchers measured NO levels in the nasal pathways of 10 healthy subjects. The researchers found that the NO levels in the nostrils increased 15 times during periods of humming compared to times of normal, quiet exhalation. The researchers think that humming creates oscillating airflows in the sinuses which increase nasal ventilation. Testing this hypothesis that humming creates resonances in the nasal tract and sinus cavities, the researchers are now exploring the various factors that make humming most effective in clearing the sinuses of gas. For example, they have found that modulating, or varying, the oscillations in airflow has a significant effect on the amount of NO gas that enters the nostrils from the sinuses. (5aBB10, Johan Sundberg, KTH, Sweden, pjohan@speech.kth.se)
Many nations are working vigorously to remove the millions of landmines buried in over 90 countries around the globe. What makes this difficult task even more daunting is that there are an estimated 350 types of anti-personnel landmines. Acousticians have been demonstrating success in developing systems that detect many kinds of mines, including the small plastic ones that evade metal detectors. In general, the acoustic systems generate small seismic waves, which gently shake small areas of the ground and then use lasers or radar beams to detect the distinct vibrations of ground containing buried landmines. Many leading developers of these systems will report their latest progress in sessions 1aPAa, 1aPAb, and 1pPAa. Some highlights: the use of ultrasound to detect landmines (1pPAa10, James Sabatier, University of Mississippi, sabatier@olemiss.edu, and paper 1pPAa9, Jim Martin, Georgia Tech, james.martin@me.gatech.edu); tests of a "fusion" approach that combines seismic, radar and electromagnetic techniques (1pPAa2, Waymond Scott, Jr., Georgia Tech, waymond.scott@ece.gatech.edu); latest version of a "nonlinear acoustics" detection system, which vibrates the ground and records the new frequencies generated by buried landmines (1aPAb1, Dimitri Donskoy, Stevens Institute of Technology, ddonskoy@stevens.edu); landmine detection using time-reversed acoustics, which locates mines by aiming sound waves at the ground and generating reversed versions of the rebounded sound waves to pinpoint a mine's location (1aPAb8, Alexander Sutin, Stevens Institute of Technology, asutin@stevens.edu).
Improving opera acoustics is the subject of numerous sessions (2aAAa, 2aAAb, 2pAAa, 2pAAb). Remarkably, the voice of an opera soloist can often reach an audience at almost the same levels as the music of an entire orchestra. However, a major challenge is to ensure the right balance between vocals and orchestra. To find solutions to this problem, some acousticians are turning to "auralization," or virtual acoustics, in which computer simulations, based on physics and mathematical models, test the acoustics of a hall. Linda Parati (lparati@ing.unife.it) and her colleagues at the University of Ferrara in Italy have used auralization to identify aspects of hall architecture, such as the slope of the stage, that control the balance (2aAAb5). Exploring opera house design, Takuya Hotehama of Kobe University in Japan (002d885n@y02.kobe-u.ac.jp) is exploring new shapes for opera halls by using a "genetic algorithm," a computer model that combines the best-performing virtual halls (the "parents") to generate hybrid designs ("children") with the best characteristics of the parents. By using this approach, Hotehama and colleagues have identified a leaf-shaped opera hall as an optimal design, which would represent a departure from the traditional horseshoe-shaped design (2aAAb4).
Researchers have developed the stunning ability to transmit sound from a single point to multiple locations simultaneously-with each receiver getting potentially different messages. Session 2aSPa will feature various experimental demonstrations of this technique. For example, Heechun Song of the Marine Physical Laboratory/Scripps Institute of Oceanography (hcsong@ucsd.edu) will discuss underwater experimental transmissions of binary data simultaneously to multiple depths using this technique (2aSPa3). Philippe Roux of the Scripps Institution of Oceanography (jit@mpl.ucsd.edu) will discuss the concept of an "acoustic TV," the underwater transmission of sound waves to simultaneously "light up" multiple pixels in an array of receivers. The acoustic TV opens up the possibility of efficiently transmitting full-motion video underwater with acoustic waves (2aSPa8).
Please note that there will be no meeting pressroom, but for any assistance on the meeting program or in arranging interviews, please feel free to contact Ben Stein at 240-506-1863 (cellphone number from May 22-28) or bstein@aip.org throughout the entire meeting.
The celebration will begin at 8:30 a.m. at City Center (55th Street between Avenue of the Americas and 7th Avenue), with a plenary session and awards ceremony. There will then be a "Celebratory Look into the Future" with presentations from young acoustical researchers.
Later in the day, there will be various tours, including a trip to see two of New York's finest musical organs, at St. Peter's Lutheran Church and Episcopal Church of St. Mary the Virgin. At 7PM, there will be an organ concert at the St. Thomas Episcopal Church in Manhattan.
For more information on the special events at the meeting, see
Fast forward to ASA's 147th Meeting in May. Consumers can now listen to music in surround sound. An estimated 80 to 90 million ultrasound scans are performed in the US alone. Ships have sophisticated sonar systems. Scientists now know many details of the sophisticated biosonar systems in bats and dolphins. Hearing aids help millions of people, and new brainstem implants can restore the sensation of sound to those with the most severe forms of deafness. Sound continues to find innovative new uses, from cooling objects in a refrigerator to destroying tumors without surgical incision. Acoustics continues to explode with activity.
Please return the REPLY FORM if you are
interested in attending the meeting or receiving additional information.
Return to 147th Meeting Archive
Return to ASA Press Room
A NEW AUDITORY BRAINSTEM IMPLANT
LISTENING TO RECORDS BY LOOKING AT THEM
NEW YORK SOUNDSCAPES
TRANSFORMING ORDINARY OBJECTS INTO TOUCH-SENSITIVE DEVICES
FROG STUTTERS, WHALE GUNSHOTS, AND VIBRATING LOBSTERS
ZAPPING DEEP TUMORS WITH SOUND
NOISE AND CHILDREN
CITY SOUNDSCAPES
MEDICAL ULTRASOUND ENTERS NEW TERRITORY
LISTENING TO ACOUSTICS IN CONCERT HALLS
HUMMING CLEARS THE SINUSES
ADVANCES IN ACOUSTICAL LANDMINE DETECTORS
BETTER OPERA HALLS WITH COMPUTERS
ACOUSTIC TV AND TIME-REVERSED COMMUNICATIONS
PRESS REGISTRATION
Reporters covering the meeting for their publication or program may obtain a reporters' badge by going to the registration area at the Princess Ballroom on the second floor of the Sheraton. Please show your reporters' credentials when requesting a badge.
HOUSING FOR THE MEETING
The Sheraton New York Hotel and Towers (811 7th Avenue, New York, NY 10019, 800-223-6550) is the headquarters hotel. A block of rooms at special rates will be available until May 1, 2004, pending availability. You may mention the Acoustical Society of America for the special rates. More information can be found at
SPECIAL EVENTS
ASA will celebrate its 75th anniversary in a day of special events on Wednesday, May 26. Reporters who wish to attend these events should contact Ben Stein at bstein@aip.org.
75 YEARS OF ACOUSTICS-SOME BACKGROUND
New York City is the place where the Acoustical Society of America held its first meeting, from May 10-11, 1929. Back in 1929, radio was the dominant entertainment medium. Films with recorded soundtracks, or "talkies," had only been out for two years. Hi-fi stereos were unavailable.... The concept of ultrasound was mostly unknown except to some laboratory scientists.
REPORTER'S REPLY FORM