Neural Plasticity for Music Processing in Young Adults: the Effect of Transcranial Direct Current Stimulation (tDCS)

Eghosa Adodo, Cameron Patterson, Yan H. Yu
Corresponding: yuy1@stjohns.edu
St. John’s University
8000 Utopia Parkway, Queens, New York, 11439

Popular version of paper 4aMU8

Presented Thursday morning, December 2, 2021

181st ASA Meeting

 

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique. It has increasingly been proposed and utilized as a unique approach to enhance various communicative, cognitive, and emotional functions. However, it is not clear whether, how, and to what extent, tDCS influences nonlinguistic processing such as music processing. The purpose of this study was to examine brain responses to music as a result of noninvasive brain stimulation.

Twenty healthy young adults participated our study. They first sat in a sound-shielded booth, and listened to classic western piano music while watching a muted movie. The music stream used in this study consisted of six types of music pattern changes (rhythm, intensity, slide, location, pitch, and timbre), and it lasted 14 minutes. Brain waves were recorded using a 65-electrode sensor cap.
Then each participant received 10 minutes of tDCS at the frontal-central scalp regions.
After 10 minutes of tDCS, they listened to the music again while their brain waves were recorded again.

Multi-feature music oddball paradigm. (Permission to use the stimuli and paradigm was obtained from the original creator, Peter Vuust).
S = same sounds, D1= pitch change; D2 = timbre change; D3 = location change; D4 = intensity change, D5 = pitch slide change; D6 = rhythm change.

Electroencephalogram/event-related potentials Transcranial direct current stimulation

We hypothesized that 10 minutes of tDCS would enhance music processing.

Our results indicated that the differences between pre- and post-tDCS brain waves were only evident in some conditions. Noninvasive brain stimulation, including tDCS, has the potential to be used as a clinical tool for enhancing auditory processing, but further studies need to examine how experimental parameters (dosage, duration, frequency, etc) influence the brain responses for auditory processing.

 

 

Share This