May Pik Yu Chan – pikyu@sas.upenn.edu
University of Pennsylvania, 3401-C Walnut Street, Suite 300, C Wing, Philadelphia, PA, 19104, United States
Jianjing Kuang
Popular version of 4aMU6 – Ultrasound tongue imaging of vowel spaces across pitches in singing
Presented at the 186 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0027410
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Singing isn’t just for the stage – everyone enjoys finding their voices in songs, regardless of whether they are performing in an auditorium or merely humming in the shower. Singing well is more than just hitting the right notes, it’s also about using your voice as an instrument effectively. One technique that professional opera singers master is to change how they pronounce their vowels based on the pitch they are singing. But why do singers change their vowels? Is it only to sound more beautiful, or is it necessary to hit these higher notes?
We explore this question by studying what non-professional singers do – if it is necessary to change the vowels to reach higher notes, then non-professional singers will also do the same at higher notes. The participants were asked to sing various English vowels across their pitch range, much like a vocal warm-up exercise. These vowels included [i] (like “beat”), [ɛ] (like “bet”), [æ] (like “bat”), [ɑ] (like “bot”), and [u] (like “boot”). Since vowels are made by different tongue gestures, we used ultrasound imaging to capture images of the participants’ tongue positions as they sang. This allowed us to see how the tongue moved across different pitches and vowels.
We found that participants who managed to sing more pitches did indeed adjust their tongue shapes when reaching high notes. Even when isolating the participants who said they have never sung in choir or acapella group contexts, the trend still stands. Those who are able to sing at higher pitches try to adjust their vowels at higher pitches. In contrast, participants who cannot sing a wide pitch range generally do not change their vowels based on pitch.
We then compared this to pilot data from an operatic soprano, who showed gradual adjustments in tongue positions across her whole pitch range, effectively neutralising the differences between vowels at her highest pitches. In other words, all the vowels at her highest pitches sounded very similar to each other.
Overall, these findings suggest that maybe changing our mouth shape and tongue position is necessary when singing high pitches. The way singers modify their vowels could be an essential part of achieving a well-balanced, efficient voice, especially for hitting high notes. By better understanding how vowels and pitch interact with each other, this research opens the door to further studies on how singers use their vocal instruments and what are the keys to effective voice production. Together, this research offers insights into not only our appreciation for the art of singing, but also into the complex mechanisms of human vocal production.
Video 1: Example of sung vowels at relatively lower pitches.
Video 2: Example of sung vowels at relatively higher pitches.
Andy Piacsek – andy.piacsek@cwu.edu
Central Washington University, Department of Physics, Ellensburg, WA, 98926, United States
Seth Lowery
Ph.D. candidate, University of Texas
Dept. of Mechanical Engineering
Austin, TX
Popular version of 4pMU3 – An experiment to measure changes in violin instrument response due to playing-in
Presented at the 185th ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0023547
Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.
How is a violin like a pair of hiking boots? Many violinists would respond “They both improve with use.” Just as boots need to be “broken in” by being worn several times to make them more supple, many musicians believe that a new violin, cello, or guitar, needs to be “played in” for a period of time, typically months, in order to fully develop its acoustic properties. There is even a commercial product, the Tone-Rite, that is marketed as a way to accelerate the playing-in process, with the claim of dramatically increasing “resonance, balance, and range,” and some builders of stringed instruments, known as luthiers, provide a service of pre-playing-in their instruments, using their own methods of mechanical stimulus, prior to selling them. But do we know if violins actually improve with use?
We tested the hypothesis that putting vibrational energy into a violin will, over time, change how the violin body responds to the vibration of the strings, which is measured as the frequency response. We used three violins in our experiment: one was left alone, serving as a control, while the two test violins were “played” by applying mechanical vibrations directly to the bridge. One of the mechanical sources was the Tone Rite, the other was a shaker driven with a signal created from a Vivaldi violin concerto as shown in the video below. The total time of vibration exceeded 1600 hours, equivalent to ten months of being played six hours per day.
Approximately once per week, we measured the frequency response of all three violins using two standard methods: bridge admittance, which characterizes the vibration of the violin body, and acoustic radiativity, which is based on the sound radiated by the violin. The measurement set up is illustrated in Figure 1.
Figure 1: Measuring the frequency response of a violin in an anechoic chamber.
Having a control violin allowed us to account for factors not associated with playing-in, such as fluctuating environmental conditions or simple aging, that might affect the frequency response. If mechanical vibrations had the hypothesized effect of physically altering the violin body, such as creating microcracks in the wood, glue, or varnish, and if the result were an increase in “resonance, balance, and range”, then we would expect a noticeable and cumulative change in the frequency response of the test violins compared to the control violin.
We did not observe any changes in the frequency responses of the violins that correlate with the amount of vibration. In Figure 2a, we plot a normalized difference in the bridge admittance between the two test violins and the control violin; Figure 2b shows a similar plot for the acoustic radiativity.
In both plots, we see no evidence that the difference between the test violins and the control violin increases with more vibration; instead we see random fluctuations that can be attributed to the slightly different experimental conditions of each measurement. This applies to both the Tone-Rite, which vibrates primarily with the 60 Hz frequency of the electric power it is plugged into, and the shaker, which provided the same frequencies that a violinist practicing her instrument would create.
Our conclusion is that long term vibrational stimulus of a violin, whether achieved mechanically or by actual playing, does not produce a physical change in the violin body that could affect its tonal characteristics.
Vasileios Chatziioannou – chatziioannou@mdw.ac.at
Department of Music Acoustics, University of Music and Performing Arts Vienna, Vienna, Vienna, 1030, Austria
Alex Hofmann
Department of Music Acoustics
University of Music and Performing Arts Vienna
Vienna, Vienna, 1030
Austria
Popular version of 5aMU6 – Two-dimensional playability maps for single-reed woodwind instruments
Presented at the 185 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0023675
Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.
Musicians show incredible flexibility when generating sounds with their instruments. Nevertheless, some control parameters need to stay within certain limits for this to occur. Take for example a clarinet player. Using too much or too little blowing pressure would result in no sound being produced by the instrument. The required pressure value (depending on the note being played and other instrument properties) has to stay within certain limits. A way to study these limits is to generate ‘playability diagrams’. Such diagrams have been commonly used to analyze bowed-string instruments, but may be also informative for wind instruments, as suggested by Woodhouse at the 2023 Stockholm Music Acoustics Conference. Following this direction, such diagrams in the form of playability maps can highlight the playable regions of a musical instrument, subject to variation of certain control parameters, and eventually support performers in choosing their equipment.
One way to fill in these diagrams is via physical modeling simulations. Such simulations allow predicting the generated sound while slowly varying some of the control parameters. Figure 1 shows such an example, where a playability region is obtained while varying the blowing pressure and the stiffness of the clarinet reed. (In fact, the parameter varied on the y-axis is the effective stiffness per unit area of the reed, corresponding to the reed stiffness after it has been mounted on the mouthpiece and the musician’s lip is in contact with it). Black regions indicate ‘playable’ parameter combinations, whereas white regions indicate parameter combinations, where no sound is produced.
Figure 1: Pressure-stiffness playability map. The black regions correspond to parameter combinations that generate sound.
One possible observation is that, when players wish to play with a larger blowing pressure (resulting in louder sounds) they should use stiffer reeds. As indicated by the plot, for a reed of stiffness per area equal to 0.6 Pa/m (soft reed) it is not possible to generate a note with a blowing pressure above 2750 Pa. However, when using a harder reed (say with a stiffness of 1 Pa/m) one can play with larger blowing pressures, but it is impossible to play with a pressure lower than 3200 Pa in this case. Varying other types of control parameters could highlight similar effects regarding various instrument properties. For instance, playability maps subject to different mouthpiece geometries could be obtained, which would be valuable information for musicians and instrument makers alike.