–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Exploring the Lives of the Ocean’s Deepest Divers After the Deepwater Horizon oil spill, restoring marine mammal populations in the Gulf of Mexico became a priority. Protecting these animals starts with understanding how they use their habitat and where they go. Sperm whales and beaked whales are some of the ocean’s most extreme divers, spending much of their lives navigating the dark depths. They rely on bursts of sound called echolocation clicks to find their prey and navigate. These clicks act like acoustic fingerprints, helping us figure out where whales go and what environments they prefer.
To track their movements, we set up 18 underwater listening stations throughout the Gulf. These instruments recorded sounds continuously for three years. By analyzing this data, we discovered patterns in where the whales appeared and how those locations were linked to oceanographic features like currents and slopes.
Video: Deploying the instruments.
Where Whales Go Different whale species tend to favor different parts of the deep Gulf. Goose-beaked whales often stay near deep eddies and steep slopes. Gervais’ beaked whales are more likely to follow surface and midwater eddies, while sperm whales mostly stick to areas where freshwater from rivers mixes with the open ocean. They tend to avoid the tropical Loop Current, a warm flow from the Caribbean into the Gulf, that seems to create conditions less favorable for these whales.
An example of how marine mammals use different parts of the Gulf of Mexico. The maps show ocean features at three depth ranges: surface (0-250 m), mid-depth (700-1250 m), and deep (1500-3000 m). Dolphins are shown in the surface plot, sperm whales in the mid-depth plot, and goose-beaked whales in the deep plot. Colors indicate water movement, with red showing strong currents and blue showing calmer areas. Circles mark recording stations, with bigger circles showing more animals detected.
Whales Shape Their Environment Whales don’t just adapt to their surroundings, they also shape them. Their powerful clicks, produced by the millions, bounce off the seafloor and underwater features, making their presence a key part of the local acoustic environment. Where whales occur, the acoustic environment changes, influenced both by their vocalizations and by the prey that may be present. Prey layers can influence how sound propagates through the water, adding complexity to the acoustic field. Detecting whales in specific areas helps us understand how the acoustic environment might vary under different conditions. Mapping where whales are present also reveals potential biological hotspots and helps us understand how sound behaves in these deep-sea habitats.
Why This Matters This research is a collaboration between scientists from the United States and Mexico, supported by NOAA’s RESTORE Science Program, the Deepwater Horizon Restoration Open Ocean Marine Mammal Trustee Implementation Group, and the Office of Naval Research Task Force Ocean. These detailed maps of whale distribution are vital for identifying critical habitats and guiding conservation strategies. They help us understand how threats like oil spills, industrial activity, and environmental changes impact whale populations, allowing us to plan effective mitigation and restoration efforts to maintain healthy ecosystems.
Brandyn Lucca – blucca@uw.edu
Bluesky: @brandynlucca.bsky.social
Instagram: @brandynmark
Applied Physics Laboratory, University of Washington, Henderson Hall (HND), 1013 NE 40th St, Seattle, Washington, 98105, United States
Joseph Warren
Instagram: @warren.bioacoustics.lab
Bluesky: @warren-lab.bsky.social
Affiliation: School of Marine and Atmospheric Sciences, Stony Brook University
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Imagine standing on the beach in New York City, looking beyond the harbor over the horizon where rolling waves meet an armada of ships lined up to unload their cargo. What remains hidden from view are the vast underwater plains, valleys, and canyons teeming with marine life beneath the surface. From a bird’s-eye view, this area forms the New York Bight, a stretch of ocean off the coast of New York City situated between southern New Jersey and eastern Long Island. This seascape offers prime real estate for animals ranging from copepods to whales.
Some animals often gather along the shelfbreak, where the relatively flat, shallow seafloor of the continental shelf dramatically changes to the deep sea. Others prefer life in a well-known ecological hotspot and one of the largest marine canyons in the world: the Hudson Canyon. Like many people, marine animals choose habitats based on the amenities they offer, but their preferences can evolve as they age or in response to environmental shifts. Some may leave the New York Bight entirely, while others may settle in undiscovered hotspots elsewhere. But how can scientists find these hotspots in the first place?
How do scientists “see” beneath the waves?
Researchers use a technique called “active acoustics” to get snapshots of where animals are in the water column across large areas that can complement other sampling methods like nets. With this approach, they send out short pulses of sound from a moving ship and measure the echoes that bounce back from the seafloor or are created from animals that live in the water column. The equipment scientists use to measure these echoes is similar to bottom-finders and fish-finding systems used by fishers and boaters. The results can reveal dense fish schools clustered along the steep walls of a canyon or zooplankton aggregations in the near-surface waters along the shelfbreak. These patterns help scientists better understand how seascapes shape habitat preferences among marine organisms (Figure 1).
Echograms are one way to visualize acoustic backscatter, with color scale units corresponding to the total energy in echoes measured from marine organisms. This echogram reveals how animals are distributed vertically in the water column along a ship transect that crossed the Hudson Canyon. The dark gray region corresponds to the seafloor.
To carry out this research, scientists measure echoes from animals in the water column, collect fish and zooplankton using nets and trawls, and measure how temperature and salinity (and other environmental factors like oxygen) vary in the ocean as you go down in depth. Researchers collected the data for this study during seasonal surveys aboard a research vessel that covered the waters south of Long Island, New York, out to the shelfbreak, approximately 140 miles away (Figure 2).
Acoustic surveys were conducted along seven transect lines (black lines) with biological and seawater sampling stations at each square point. The white lines represent isobaths, or lines of constant depth, at 25, 50, 100, 500, 100, and 2000 m. The orange and red stars indicate where the Hudson Shelf Valley and Hudson Canyon begin.
Location, location, location: Hotspots change with the seasons
The New York Bight regions with the most fish and zooplankton (as measured by our echosounders) change with the seasons. In winter and early spring, most organisms concentrated farther offshore, often along the canyon edges or beyond the shelfbreak. As summer arrives, these biological hotspots grow along the shelfbreak, especially in and around the canyons, and move closer to shore. By fall, acoustic measurements showed that fish and zooplankton spread more evenly across the continental shelf.
For fish living near the seafloor, a seasonal feature called the Mid-Atlantic Cold Pool plays a major role in their movements. This layer of cold water forms on and above the seafloor over part of the continental shelf each spring and slowly decreases in volume throughout the summer. When the Cold Pool forms, many near-bottom fish shift away from their spatial extent due to the fish having temperature preferences and gather in the Hudson Canyon, other shelfbreak canyons, inshore areas, and the Hudson Shelf Valley. As the Cold Pool shrinks in late summer, their distribution becomes more like the broader patterns observed for overall biological backscatter (Figure 3).
An example echogram of biological backscatter near the shelfbreak. The 9º (gray) and 10º (black) isotherms, or lines of constant temperature, approximate the lateral and vertical extent of the Mid-Atlantic Cold Pool that, in this case, nearly walled this aggregation off from the inshore waters on the continental shelf entirely.
From underwater sound to action: Guiding management decisions
The New York Bight is a dynamic and productive ecosystem that experiences significant fishing pressure, shipping activity, and offshore energy development. By combining acoustic surveys with biological net sampling and oceanographic measurements, scientists can identify areas that fish and zooplankton may prefer (or avoid) throughout the year. Surveys such as this one help guide management decisions that balance the economic and commercial health of the New York Bight.
Michael Stocker – mstocker@OCR.org
Bluesky: @ocean-noise.bsky.social
Instagram: @oceanconservationresearch
PO Box 559, Lagunitas, CA, 94938-0559, United States
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
As the technologies of commerce and industry expand out into the sea, so does the need to localize, query, and control these technologies. Due to the challenges of physically accessing underwater equipment, a digital “Underwater Internet of Things” is being developed for marine enterprises.
Due to the opacity of water to radio frequency electromagnetic energy – which we use for our above water WiFi and Blue Tooth and other communication connections, underwater communication channels predominantly use sound. This is particularly the case as distances between the communication nodes increase.
Seafloor processing equipment for oil and gas extraction equipment (Nautronix illustration)
The efficiency of sound transmission through water has not been lost on evolution; pretty much all marine and aquatic animals use sound to get around. From the simple clicks and grunts of marine invertebrates and fishes, to the complex and beautiful songs of humpback whales. In fact sound transmits so efficiently in water that some whales can project sounds over thousands of kilometers.
The ocean is alive with sound, and marine animals have evolved and adapted to utilize “acoustical niches” appropriate to their particular habitats; dolphins using high-frequency, short wavelength biosonar for near-field echolocation, large whales using low-frequency, long wavelength sounds for long distance communication and navigation. And all the critters in between – fishes, lobsters, krill, and benthic worms, all have their own habitat-adapted sound repertoires.
So herein lies the conflict with the acoustic Underwater Internet of Things (UIoT): The frequencies of the sounds being used to control and query underwater equipment overlaps the various existing bioacoustic communication channels. And while the sheer density of this technological noise threatens to obscure or “mask” important bioacoustic communication channels, the sound qualities of the common digital signals themselves threaten to turn the ocean acoustic environment into a living acoustical nightmare.
Digital communication hinges on unambiguous data states – strings of “ones and zeros” that code into data channels. Acoustically this translates into ripping streams of “noise-not noise” signals. The problem with this in the realm of bioacoustics is that these data streams sound horrible. They are also clearly associated with hearing damage in humans and other animals.
This nasty noise problem is exacerbated by the fact that the most useful transmission frequencies for commerce and industry fall in the 1kHz to 50kHz frequency range, which resides in the ‘sweet spot’ for dolphins and porpoises, and overlaps the hearing ranges of most other marine animals.
Working with the International Standards Organization (ISO) and the International Electrotechnical Commission (IEC), we are urging industry to use signals that are less damaging to marine life. This would include “transmit on query only” and synchronized, spread spectrum “frequency hopping” schemes,* and using bio-mimetic signals which would sound more like dolphins or whales and less like giant fingernails scratching across a dirty chalkboard.
* “Spread Spectrum, frequency hopping” technology was patented by 1940s-50s glamour actress Lana Turner. The premise being that the transmitter and the receiver are synchronized over a coded series of transmission channel frequencies. Transmission only occurs at a specific time over a specific frequency channel. In this way the communication channel becomes impervious to noise, so the signal level can be below the ambient noise level. A variation of this technology makes it possible to have millions of cell phones operating in the same radio frequency band without interference.
MELVILLE, N.Y., Nov. 21, 2024 – Mysterious, repeating sounds from the depths of the ocean can be terrifying to some, but in the 1980s, they presented a unique look at an underwater soundscape.
In July 1982, researchers in New Zealand recorded unidentifiable sounds as a part of an experiment to characterize the soundscape of the South Fiji Basin. The sound consisted of four short bursts resembling a quack, which inspired the name of the sound “Bio-Duck.”
Looking from the stern of the ship as it tows the long horizontal array of hydrophones. The tow cable can be seen going through the metal horn at the stern. The hydrophone array is several hundred meters behind the ship and about 200 meters deep. Credit: Ross Chapman
“The sound was so repeatable, we couldn’t believe at first that it was biological,” said researcher Ross Chapman from the University of Victoria. “But in talking to other colleagues in Australia about the data, we discovered that a similar sound was heard quite often in other regions around New Zealand and Australia.”
They came to a consensus that the sounds had to be biological.
Chapman will present his work analyzing the mystery sounds Thursday, Nov. 21, at 10:05 a.m. ET as part of the virtual 187th Meeting of the Acoustical Society of America, running Nov. 18-22, 2024.
“I became involved in the analysis of the data from the experiment in 1986,” Chapman said. “We discovered that the data contained a gold mine of new information about many kinds of sound in the ocean, including sounds from marine mammals.”
“You have to understand that this type of study of ocean noise was in its infancy in those days. As it turned out, we learned something new about sound in the ocean every day as we looked further into the data—it was really an exciting time for us,” he said.
However, the sounds have never been conclusively identified. There are theories the sounds were made by Antarctic Minke whales, since the sounds were also recorded in Antarctic waters in later years, but there was no independent evidence from visual sightings of the whales making the sounds in the New Zealand data.
No matter the animal, Chapman believes that the sounds could be a conversation. The data was recorded by an acoustic antenna, an array of hydrophones that was towed behind a ship. The uniqueness of the antenna allowed the researchers to identify the direction the sounds were coming from.
“We discovered that there were usually several different speakers at different places in the ocean, and all of them making these sounds,” Chapman said. “The most amazing thing was that when one speaker was talking, the others were quiet, as though they were listening. Then the first speaker would stop talking and listen to responses from others.”
He will present the waveform and spectrum of the recordings during his session, as well as further evidence that the work was a conversation between multiple animals.
“It’s always been an unanswered issue in my mind,” Chapman said. “Maybe they were talking about dinner, maybe it was parents talking to children, or maybe they were simply commenting on that crazy ship that kept going back and forth towing that long string behind it.”
ASA PRESS ROOM In the coming weeks, ASA’s Press Room will be updated with newsworthy stories and the press conference schedule at https://acoustics.org/asa-press-room/.
LAY LANGUAGE PAPERS ASA will also share dozens of lay language papers about topics covered at the conference. Lay language papers are summaries (300-500 words) of presentations written by scientists for a general audience. They will be accompanied by photos, audio, and video. Learn more at https://acoustics.org/lay-language-papers/.
PRESS REGISTRATION ASA will grant free registration to credentialed and professional freelance journalists. If you are a reporter and would like to attend the virtual meeting and/or press conferences, contact AIP Media Services at media@aip.org. For urgent requests, AIP staff can also help with setting up interviews and obtaining images, sound clips, or background information.
ABOUT THE ACOUSTICAL SOCIETY OF AMERICA The Acoustical Society of America is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.
Brendan Smith – brendan.smith@dal.ca
Twitter: @bsmithacoustics
Instagram: @brendanthehuman
Dalhousie University, Department of Oceanography, Halifax, Nova Scotia, B3H 4R2, Canada
Additional author:
Dr. David Barclay
Popular version of 1aAO4 – Passive acoustic monitoring of a major seismic event at the Main Endeavour Hydrothermal Vent Field
Presented at the 187th ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0034918
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
The Main Endeavour Hydrothermal Vent Field (MEF) is located on the Juan de Fuca Ridge in the Northeast Pacific Ocean. This ridge is a seafloor spreading center, where tectonic plates pull apart and new oceanic crust is formed as magma upwells from beneath the earth’s surface. This movement of the earth’s crust causes cracks to form, allowing seawater to penetrate downwards towards the magma below, where it circulates and eventually resurfaces into the ocean at temperatures over 300 degrees Celsius. Uniquely adapted organisms thrive at these sites, surviving from energy provided not by the sun, but by the heat and chemical composition of the vent fluid.
Figure 1: Black-smoker hydrothermal vent chimney at the Main Endeavour Hydrothermal Vent Field (Image courtesy of Ocean Networks Canada)
Long term measurements of hydrothermal vent activity are of scientific interest. However, the high temperatures and caustic chemical characteristics make it challenging to place probes directly in the vent flow. For this reason, passive acoustics (listening) can be a useful tool for hydrothermal vent monitoring, because the hydrophones (underwater microphones) can be located a safe distance from the vent fluid. Ocean Networks Canada have had a hydrophone at MEF continuously recording for over 5 years, and for the past year, a 4-element hydrophone array has been recording at this location.
The motion of the tectonic plates in these regions causes a lot of seismic activity, such as earthquakes. On March 6, 2024, a large ~4.1 magnitude earthquake was recorded at MEF, and earthquake rates were the highest observed since 2005. This earthquake was recorded on the hydrophone array and can be seen in the spectrogram in Figure 2.
Figure 2: Spectrogram of ~4.1 magnitude earthquake at MEF
Figure 3 shows differences in the soundscape at Endeavour before, during, and after the earthquake. The changes after the earthquake persist more than 1-week following the event. The duration and higher frequency components of the changes in the soundscape suggest sources other than seismicity.
Figure 3: Acoustic spectra before, during, and after the earthquake at MEF
The hydrophone array also provides us with the opportunity to gain further insights. For example, surface wind/wave-generated noise is a predominant source of ambient sound in the ocean, and the coherence, or spatial relationship between multiple hydrophone elements in the presence of this sound source, is well known. We can compare the measured coherence with the expected (modeled) coherence to explore any deviations, which could be attributed to hydrothermal vent activity. In Figure 4 we see differences between the measurements and model below 1 kHz (outlined by black boxes), suggesting the influence of hydrothermal vent sounds on the local soundscape.
Figure 4: Measured and modeled acoustic vertical coherence at MEF
In conclusion, passive acoustic monitoring can be used to monitor changes in hydrothermal vent fields in response to seismic activity. This earthquake provided a test case to prepare for a more major seismic event, which is expected to occur at Endeavour in the coming years. Passive acoustic monitoring will be an important tool to document vent field activity during this future event.
Florent Le Courtois – florent.lecourtois@gmail.com
DGA Tn, Toulon, Var, 83000, France
Samuel Pinson, École Navale, Rue du Poulmic, 29160 Lanvéoc, France
Victor Quilfen, Shom, 13 Rue de Châtellier, 29200 Brest, France
Gaultier Real, CMRE, Viale S. Bartolomeo, 400, 19126 La Spezia, Italy
Dominique Fattaccioli, DGA Tn, Avenue de la Tour Royale, 83000 Toulon, France
Popular version of 4aUW7 – The Acoustic Laboratory for Marine Applications (ALMA) applied to fluctuating environment analysis
Presented at the 186th ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0027503
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Ocean dynamics happen at various spatial and temporal scales. They cause the displacement and the mixing of water bodies of different temperatures. Acoustic propagation is strongly impacted by these fluctuations as sound speed depends mainly on the underwater temperature. Monitoring underwater acoustic propagation and its fluctuations remains a scientific challenge, especially at mid-frequency (typically the order of 1 to 10 kHz). Dedicated measurement campaigns have to be conducted to increase the understanding of the fluctuations, their impacts on the acoustic propagation and thus to develop appropriate localization processing.
The Acoustic Laboratory for Marine Application (ALMA) has been proposed by the French MOD Procurement Agency (DGA) to conduct research for passive and active sonar since 2014, in support of future sonar array design and processing. Since its inception in 2014, ALMA has undergone remarkable transformations, evolving from a modest array of hydrophones to a sophisticated system equipped with 192 hydrophones and advanced technology. With each upgrade, ALMA’s capabilities have expanded, allowing us to delve deeper into the secrets of the sea.
Figure 1. Evolution of the ALMA array configuration, from 2014 to 2020. Real and Fattacioli, 2018
Bulletin of sea temperature to understand the acoustic propagation
The campaign of 2016 took place Nov 7 – 17, 2016, off the Western Coast of Corsica in the Mediterranean Sea, located by the blue dot in Fig.2 (around 42.4 °N and 9.5 °E). We analyzed signals from a controlled acoustic source and temperature recording, corresponding approximately to 14 hours of data.
Figure 2. Map of surface temperature during the campaign. Heavy rains of previous days caused a vortex in the north of Corsica. Pinson et. al, 2022
The map of sea temperature during the campaign was computed. It is similar to a weather bulletin for the sea. From previous days, heavy rains caused a global cooling over the areas. A vortex appeared in the Ligurian Sea between Italy and the North of Corsica. Then the cold waters traveled Southward along Corsica Western coast to reach the measurement area. The water cooling was measured as well on the thermometers. The main objective was to understand the changes in the echo pattern in relation to the temperature change. Echos can characterize the acoustic paths. We are mainly interested in the amplitude, the time of travel and the angle of arrival of echoes to describe the acoustic path between the source and ALMA array.
All echoes extracted by processing ALMA data are plotted as dots in 3D. They depend on the time of the campaign, the angle of arrival and the time of flight. The loudness of the echo is indicated by the colorscale. The 3D image is sliced in Fig. 3 a), b) and c) for better readability. The directions of the last reflection are estimated in Fig. 3 a): positive angles come from the surface reflection while negative angles come from seabed reflection. The global cooling of the waters caused a slowly increasing fluctuation of the time of flight between the source and the array in Fig. 3 b). A surprising result was a group of spooky arrivals, who appeared briefly during the campaign at an angle close to 0 ° during 3 and 12 AM in Fig. 3 b) and c).
All the echoes detected by processing the acoustic data. Pinson et. al, 2022
Figure 3. Evolution of the acoustic paths during the campaign. Each path is a dot defined by the time of flight and the angle of arrival during the period of the campaign. Pinson et. al, 2022
The acoustic paths were computed using the bulletin of sea temperature. A more focused map of the depth of separation between cold and warm waters, also called mixing layer depths (MLD), is plotted in Fig 4. We noticed that, when the mixing layer depth is below the depth of the source, the cooling causes acoustic paths to be trapped by bathymetry in the lower part of the water column. It explains the apparition of the spooky echoes. Trapped paths are plotted in the blue line while regular paths are plotted in black in Fig. 5.
Figure 4. Evolution of the depth of separation between cold and warm water during the campaign. Pinson et. al, 2022
Figure 5. Example of acoustic paths in the area: black lines indicate regular propagation of the sound; blue lines indicate the trapped paths of the spooky echoes. Pinson et. al, 2022
Overview
The ALMA system and the associated tools allowed illustrating practical ocean acoustics phenomena. ALMA has been deployed during 5 campaigns, representing 50 days at sea, mostly in the Western Mediterranean Sea, but also in the Atlantic to tackle other complex physical problems.