Measuring the sounds of microbubbles for ultrasound therapy
T. Douglas mast – doug.mast@uc.edu
Instagram: @baglamist
University of Cincinnati, Cincinnati, OH, 45224, United States
Popular version of 2aBAa7 – Measure for measure: Diffraction correction for consistent quantification of bubble-related acoustic emissions
Presented at the 188th ASA Meeting
Read the abstract at https://eppro01.ativ.me/appinfo.php?page=Session&project=ASAICA25&id=3868554
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Microscopic bubbles, when caused to vibrate by ultrasound waves, can be powerful enough to break through the body’s natural barriers and even to destroy tissue. Growth, resonance, and violent collapse of these microbubbles, called acoustic cavitation, is enabling new medical therapies such as drug delivery through the skin, opening of the blood-brain barrier, and destruction of tumors. However, the biomedical effects of cavitation are still challenging to understand and control. A special session at the 188th meeting of the Acoustical Society of America, titled “Double, Double, Toil and Trouble – Towards a Cavitation Dose,” is bringing together researchers working on methods to consistently and accurately measure these bubble effects.
For more than 30 years, scientists have measured bubble activity by listening with electronic sensors, called passive cavitation detection. The detected sounds can resemble sustained musical tones, from continuously vibrating bubbles, or applause-like noise, from groups of collapsing bubbles. However, results are challenging to compare between different measurement configurations and therapeutic applications. Researchers at the University of Cincinnati are proposing a method for reliably characterizing the activity of cavitating bubbles by quantifying their radiated sound.
A passive cavitation detector (left) listens for sound waves radiated by a collection of cavitating bubbles (blue dots) within a region of interest (blue rectangle).
The Cincinnati researchers are trying to improve measurements of bubble activity by precisely accounting for the spatial sensitivity patterns of passive cavitation detectors. The result is a measure of cavitation dose, equal to the total sound power radiated from bubbles per unit area or volume of the treated tissue. The hope this approach will enable better prediction and monitoring of medical therapies based on acoustic cavitation.
Figure 1: In an experiment simulating drug delivery through the skin (left), a treatment source projects an ultrasound beam onto animal skin. A passive cavitation detector (PCD) listens for sound radiated by bubbles at the skin surface, while the skin’s permeability is measured from its electrical resistance. Measured bubble activity is quantified using the sensitivity pattern of the PCD within the treated region (highlighted blue circle).
The researchers reported results from two experiments testing their methods for characterizing cavitation. In experiments testing ultrasound methods for drug delivery through the skin (Figure 1), they found that total power of subharmonic acoustic emissions (like musical tones indicating sustained vibrations of resonating bubbles) per unit skin surface area consistently increased when the skin became more permeable, quantifying the role of bubble activity in drug delivery. In a second experiment (Figure 2), the researchers quantified bubble activity during heating of animal liver tissue by ultrasound, simulating cancer therapies called thermal ablation. They found that increased bubble activity could indicate both faster tissue heating near the treatment source and reduced heating further from the source.
Figure 2: An ultrasound (US) array sonicates animal liver tissue with a high-intensity ultrasound beam, causing tissue heating (thermal ablation) as used for liver tumor treatments. Increased bubble activity was found to reduce the depth of treatment, while sometimes also increasing the area of ablated tissue near the tissue surface.
This approach to measuring bubble activity could help to establish standard cavitation doses for many different ultrasound therapy methods. Quantitative measurements of bubble activity could help confirm treatment success, such as drug delivery through the skin, or to guide thermal treatments by optimizing bubble activity to heat tumors more efficiently. Standard measures of cavitation dose should also help scientists more rapidly develop new medical therapies based on ultrasound-activated microbubbles.