Consumer label for the noise properties of tires and road pavements

Ulf Sandberg –

Swedish National Road and Transport Research Institute (VTI), Linkoping, -, SE-58195, Sweden

Popular version of 1pNSb9 – Acoustic labelling of tires, road vehicles and road pavements: A vision for substantially improved procedures
Presented at the 185th ASA Meeting
Read the abstract at

Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.

Not many vehicle owners know that they can contribute to reducing traffic noise by making an informed choice of their tires, while not sacrificing safety or economy. At least you can do so in Europe, where there is a regulation requiring tires be labelled with noise level (among others). But it has substantial flaws for which we propose solutions by applying state-of-the-art and innovative solutions.

It is here where consumer labels come in. In most parts of the world, we have consumer labels including noise levels on household appliances, lawn mowers, printers, etc. But when it comes to vehicles, tires, and road pavements, a noise label on the product is rare. So far, it is mandatory only on tires sold in the European Union, and it took a lot of efforts of noise researchers to get it accepted along with the more “popular” labels for energy (rolling resistance), and wet grip (skid resistance). Figure 1 shows and explains the European label.

Figure 1: The present European tire label, which must be attached to all tires sold in the European Union, here supplemented by explanations.

Why so much focus on tires? Figure 2 illustrates how much of the noise energy that comes from European car tires compared to the “propulsion noise”; i.e. noise from engine, exhaust, transmission, and fans. For speeds above 50 km/h (31 mph) over 80 % of the noise comes from tires. For trucks and busses, the picture is similar although above 50 km/h it may be 50-80 % from the tires. For electric powered vehicles, of course, the tires are almost entirely dominating as a noise source at all speeds. Thus, already now but even more in the future, consumer choices favouring lower noise tires will have an impact on traffic noise exposure. To achieve this progress, tire labels including noise are needed, and they must be fair and discriminate between the quiet and the noisy.

Figure 2: Distribution of tire/road vs propulsion noise. Calculated for typical traffic with 8 % heavy vehicles in Switzerland [Heutschi et al., 2018].

The EU label is a good start, but there are some problems. When we have purchased tires and made noise measurements on them (in A-weighted dB), there is almost no correlation between the noise labels and our measured dB levels. To identify the cause of the problem and suggest improvements, the European Road Administrations (CEDR) funded a project named STEER (Strengthening the Effect of quieter tyres on European Roads), also supplemented by a supporting project by the Swedish Road Administration. STEER found that there were two severe problems in the noise measuring procedure: (1) the test track pavement defined in an ISO standard showed rather large variations from test site to test site, and (2) in many cases only the noisiest tires were measured, and all other tires of the same type (“family”) were labelled with the same value although they could be up to 6 dB quieter. Such “families” may include over 100 different dimensions, as well as load and speed ratings. Consequently, the full potential of the labelling system is far from being used.

The author’s presentation at Acoustics 2023 will deal with the noise labelling problem and suggest in more detail how the measurement procedures may be made much more reproducible and representative. This includes using special reference tires for calibrating test track surfaces, production of such test track surfaces by additive manufacturing (3D printing) from digitally described originals, and calculating the noise levels by digital simulations, modelling, and using AI. Most if not all the noise measurements can go indoors, see an existing facility in Figure 3, to be conducted in laboratories that have large steel drums. Also in such a case a drum surface made by 3D printing is needed.


Figure 3: Laboratory drum facility for measurement of both rolling resistance and noise emission of tires (both for cars and trucks). Note the microphones. The tire is loaded and rolled against one of the three surfaces on the drum. Photo from the Gdansk University of Technology, courtesy of Dr P Mioduszewski.