1aSC31 – Shape changing artificial ear inspired by bats enriches speech signals

Anupam K Gupta1,2, Jin-Ping Han ,2, Philip Caspers1, Xiaodong Cui2, Rolf Müller1

  1. Dept. of Mechanical Engineering, Virginia Tech, Blacksburg, VA, USA
  2. IBM T. J. Watson Research Center, Yorktown, NY, USA

Contact: Jin-Ping Han – hanjp@us.ibm.com

Popular version of paper 1aSC31, “Horseshoe bat inspired reception dynamics embed dynamic features into speech signals.”
Presented Monday morning, Novemeber 28, 2016
172nd ASA Meeting, Honolulu

Have you ever had difficulty understanding what someone was saying to you while walking down a busy big city street, or in a crowded restaurant? Even if that person was right next to you? Words can become difficult to make out when they get jumbled with the ambient noise – cars honking, other voices – making it hard for our ears to pick up what we want to hear. But this is not so for bats. Their ears can move and change shape to precisely pick out specific sounds in their environment.

This biosonar capability inspired our artificial ear research and improving the accuracy of automatic speech recognition (ASR) systems and speaker localization. We asked if could we enrich a speech signal with direction-dependent, dynamic features by using bat-inspired reception dynamics?

Horseshoe bats, for example, are found throughout Africa, Europe and Asia, and so-named for the shape of their noses, can change the shape of their outer ears to help extract additional information about the environment from incoming ultrasonic echoes. Their sophisticated biosonar systems emit ultrasonic pulses and listen to the incoming echoes that reflect back after hitting surrounding objects by changing their ear shape (something other mammals cannot do). This allows them to learn about the environment, helping them navigate and hunt in their home of dense forests.

While probing the environment, horseshoe bats change their ear shape to modulate the incoming echoes, increasing the information content embedded in the echoes. We believe that this shape change is one of the reasons bats’ sonar exhibit such high performance compared to technical sonar systems of similar size.

To test this, we first built a robotic bat head that mimics the ear shape changes we observed in horseshoe bats.

han1 - bats

Figure 1: Horseshoe bat inspired robotic set-up used to record speech signal

We then recorded speech signals to explore if using shape change, inspired by the bats, could embed direction-dependent dynamic features into speech signals. The potential applications of this could range from improving hearing aid accuracy to helping a machine more-accurately hear – and learn from – sounds in real-world environments.

We compiled a digital dataset of 11 US English speakers from open source speech collections provided by Carnegie Mellon University. The human acoustic utterances were shifted to the ultrasonic domain so our robot could understand and play back the sounds into microphones, while the biomimetic bat head actively moved its ears. The signals at the base of the ears were then translated back to the speech domain to extract the original signal.
This pilot study, performed at IBM Research in collaboration with Virginia Tech, showed that the ear shape change was, in fact, able to significantly modulate the signal and concluded that these changes, like in horseshoe bats, embed dynamic patterns into speech signals.

The dynamically enriched data we explored improved the accuracy of speech recognition. Compared to a traditional system for hearing and recognizing speech in noisy environments, adding structural movement to a complex outer shape surrounding a microphone, mimicking an ear, significantly improved its performance and access to directional information. In the future, this might improve performance in devices operating in difficult hearing scenarios like a busy street in a metropolitan center.

han2

Figure 2: Example of speech signal recorded without and with the dynamic ear. Top row: speech signal without the dynamic ear, Bottom row: speech signal with the dynamic ear

5aSC43 – Appropriateness of acoustic characteristics on perception of disaster warnings

Naomi Ogasawara – naomi-o@mail.gpwu.ac.jp
Kenta Ofuji – o-fu@u-aizu.ac.jp
Akari Harada

Popular version of paper, 5aSC43, “Appropriateness of acoustic characteristics on perception of disaster warnings.”
Presented Friday morning, December 2, 2016
172nd ASA Meeting, Honolulu

As you might know, Japan has often been hit by natural disasters, such as typhoons, earthquakes, flooding, landslides, and volcanic eruptions. According to the Japan Institute of Country-ology and Engineering [1], 20.5% of all the M6 and greater earthquakes in the world occurred in Japan, and 0.3% of deaths caused by natural disasters worldwide were in Japan. These numbers seem quite high compared with the fact that Japan occupies only 0.28% of the world’s land mass.

Municipalities in Japan issue and announce evacuation calls to local residents through the community wireless system or home receiver when a disaster is approaching; however, there have been many cases reported in which people did not evacuate even after they heard the warnings [2]. This is because people tend to not believe and disregard warnings due to a normalcy bias [3]. Facing this reality, it is necessary to find a way to make evacuation calls more effective and trustworthy. This study focused on the influence of acoustic characteristics (voice gender, pitch, and speaking rate) of a warning call on the listeners’ perception of the call and tried to make suggestions for better communication.

Three short warnings were created:

  1. Kyoo wa ame ga furimasu. Kasa wo motte dekakete kudasai. ‘It’s going to rain today. Please take an umbrella with you.’
  2. Ookina tsunami ga kimasu. Tadachini hinan shitekudasai. ‘A big tsunami is coming. Please evacuate immediately.’ and
  3. Gakekuzure no kiken ga arimasu. Tadachini hinan shitekudasai. ‘There is a risk of landslide. Please evacuate immediately.’

A female and a male native speaker of Japanese, who both have relatively clear voices and good articulation, read the warnings out aloud at a normal speed (see Table 1 for the acoustic information of the utterances), and their utterances were recorded in a sound attenuated booth with a high quality microphone and recording device. Each of the female and male utterances was modified using the acoustic analysis software PRAAT [4] to create stimuli with 20% higher or lower pitch and 20% faster or slower speech rate. The total number of tokens created was 54 (3 warning types x 2 genders x 3 pitch levels x 3 speech rates), but only 4 of the warning 1) tokens were used in the perception experiment as practice stimuli.

oga1

Table 1: Acoustic Data of Normal Tokens

34 university students listened to each stimulus through the two speakers placed on the right and left front corners in a classroom (930cm x 1,500cm). Another group of 42 students and 11 people from the public listened to the same stimuli through one speaker placed on the front in a lab (510cm x 750cm). All of the participants rated each token on 1-to-5 scale (1: lowest, 5: highest) in terms of Intelligibility, Reliability, and Urgency.

Figure 1 summarizes the evaluation responses (n=87) in a bar chart, with the average scores calculated from the ratings on a 1-5 scale for each combination of the acoustic conditions. Taking Intelligibility, for example, the average score was the highest when the calls were spoken with a female voice, with normal speed and normal pitch. Similar results are seen for Reliability as well. On the other hand, respondents felt a higher degree of Urgency for both faster speed and higher pitch.

oga2

Figure 1.  Evaluation responses (bar graph, in percent) and Average scores (data labels and line graph on 1 – 5 scale)

The data were then analyzed with an analysis of variance (ANOVA, Table 2). Figure 2 illustrates the same results as bar charts. It was confirmed that for all of Intelligibility, Reliability, and Urgency, the main effect of speaking speed was the most dominant. In particular, Urgency can be influenced by the speed factor alone by up to 43%.

oga3

Table 2: ANOVA results

oga4

Figure 2: Decomposed variances in stacked bar charts based on the ANOVA results

Finally, we calculated the expected average evaluation scores, with respect to different levels of speed, to find out how much influence speed has on Urgency, with a female speaker and normal pitch (Figure 3). Indeed, by setting speed to fast, the perceived Urgency can be raised to the highest level, even at the expense of Intelligibility and Reliability to some degrees. Based on these results, we argue that the speech rate may effectively be varied depending on the purpose of an evacuation call, whether it prioritizes Urgency, or Intelligibility and Reliability.

oga5

Figure 3: Expected average evaluation scores on 1-5 scale, setting female voice and normal pitch

References

  1. Japan Institute of Country-ology and Engineering (2015). Kokudo wo shiru [To know the national land]. Retrieved from: http://www.jice.or.jp/knowledge/japan/commentary09.
  2. Nakamura, Isao. (2008). Dai 6 sho Hinan to joho, dai 3 setsu Hinan to jyuumin no shinri [Chapter 6 Evacuation and Information, Section 3 Evacuation and Residents’ Mind]. In H. Yoshii & A. Tanaka (Eds.), Saigai kiki kanriron nyuumon [Introduction to Disaster Management Theory] (pp.170-176). Tokyo: Kobundo.
  3. Drabek, Thomas E. (1986). Human System Responses to Disaster: An Inventory of Sociological Findings. NY: Springer-Verlag New York Inc.
  4. Boersma, Paul & Weenink, David (2013). Praat: doing phonetics by computer [Computer program]. Retrieved from: http://www.fon.hum.uva.nl/praat/.

Tags:
-Emergency warnings/response
-Natural disasters
-Broadcasting
-Speech rate
-Pitch

1pSC26 – Acoustics and Perception of Charisma in Bilingual English-Spanish

Rosario Signorello – rsignorello@ucla.edu
Department of Head and Neck Surgery
31-20 Rehab Center,
Los Angeles, CA 90095-1794
Phone: +1 (323) 703-9549

Popular version of paper 1pSC26 “Acoustics and Perception of Charisma in Bilingual English-Spanish 2016 United States Presidential Election Candidates”
Presented at the 171st Meeting on Monday May 23, 1:00 pm – 5:00 pm, Salon F, Salt Lake Marriott Downtown at City Creek Hotel, Salt Lake City, Utah,

Charisma is the set of leadership characteristics, such as vision, emotions, and dominance used by leaders to share beliefs, persuade listeners and achieve goals. Politicians use voice to convey charisma and appeal to voters to gain social positions of power. “Charismatic voice” refers to the ensemble of vocal acoustic patterns used by speakers to convey personality traits and arouse specific emotional states in listeners. The ability to manipulate charismatic voice results from speakers’ universal and learned strategies to use specific vocal parameters (such as vocal pitch, loudness, phonation types, pauses, pitch contours, etc.) to convey their biological features and their social image (see Ohala, 1994; Signorello, 2014a, 2014b; Puts et al., 2006). Listeners’ perception of the physical, psychological and social characteristics of the leader is influenced by universal ways to emotionally respond to vocalizations (see Ohala, 1994; Signorello, 2014a, 2014b) combined with specific, culturally-mediated, habits to manifest emotional response in public (Matsumoto, 1990; Signorello, 2014a).

Politicians manipulate vocal acoustic patterns (adapting them to the culture, language, social status, educational background and the gender of the voters) to convey specific types of leadership fulfilling everyone’s expectation of what charisma is. But what happen to leaders’ voice when they use different languages to address voters? This study investigates speeches of bilingual politicians to find out the vocal acoustic differences of leaders speaking in different languages. It also investigates how the acoustical differences in different languages can influence listeners’ perception of type of leadership and the emotional state aroused by leaders’ voices.

We selected vocal samples from two bilingual America-English/American-Spanish politicians that participated to the 2016 United States presidential primaries: Jeb Bush and Marco Rubio. We chose words with similar vocal characteristics in terms of average vocal pitch, vocal pitch range, and loudness range. We asked listeners to rate the type of charismatic leadership perceived and to assess the emotional states aroused by those voices. We finally asked participants how the different vocal patterns would affect their voting preference.

Preliminary statistical analyses show that English words like “terrorism” (voice sample 1) and “security” (voice sample 2), characterized by mid vocal pitch frequencies, wide vocal pitch ranges, and wide loudness ranges, convey an intimidating, arrogant, selfish, aggressive, witty, overbearing, lazy, dishonest, and dull type of charismatic leadership. Listeners from different language and cultural backgrounds also reported these vocal stimuli triggered emotional states like contempt, annoyance, discomfort, irritation, anxiety, anger, boredom, disappointment, and disgust. The listeners who were interviewed considered themselves politically liberal and they responded that they would probably vote for a politician with the vocal characteristics listed above.

Speaker Jeb Bush. Mid vocal pitch frequencies (126 Hz), wide vocal pitch ranges (97 Hz), and wide loudness ranges (35 dB)

Speaker Marco Rubio. Mid vocal pitch frequencies 178 Hz), wide vocal pitch ranges (127 Hz), and wide loudness ranges (30 dB)

Results also show that Spanish words like “terrorismo” (voice sample 3) and “ilegal” (voice sample 4) characterized by an average of mid-low vocal pitch frequencies, mid vocal pitch ranges, and narrow loudness ranges convey a personable, relatable, kind, caring, humble, enthusiastic, witty, stubborn, extroverted, understanding, but also weak and insecure type of charismatic. Listeners from different language and cultural backgrounds also reported these vocal stimuli triggered emotional states like happiness, amusement, relief, and enjoyment. The listeners who were interviewed considered themselves politically liberal and they responded that they would probably vote for a politician with the vocal characteristics listed above.  

Speaker Jeb Bush. Mid-low vocal pitch frequencies (95 Hz), mid vocal pitch ranges (40 Hz), and narrow loudness ranges (17 dB) 

Speaker Marco Rubio. Mid vocal pitch frequencies 146 Hz), wide vocal pitch ranges (75 Hz), and wide loudness ranges (25 dB)

Voice is a very dynamic non-verbal behavior used by politicians to persuade the audience and manipulate voting preference. The results of this study show how acoustic differences in voice convey different types of leadership and arouse differently the emotional states of the listeners. The voice samples studied show how speakers Jeb Bush and Marco Rubio adapt their vocal delivery to audiences of different backgrounds. The two politicians voluntary manipulate their voice parameters while speaking in order to appear as they were endowed of different leadership qualities. The vocal pattern used in English conveys the threatening and dark side of their charisma, inducing the arousal of negative emotions, which triggers a positive voting preference in listeners. The vocal pattern used in English conveys the charming and caring side of their charisma, inducing the arousal of positive emotions, which triggers a negative voting preference in listeners.

The manipulation of voice arouses emotional states that will induce voters to consider a certain type of leadership as more appealing. Experiencing emotions help voters to assess the effectiveness of a political leader. If the emotional arousing matches with voters’ expectation of how a charismatic leader should make them feel then voters would help the charismatic speaker to became their leader.

References
Signorello, R. (2014a). Rosario Signorello (2014). La Voix Charismatique : Aspects Psychologiques et Caractéristiques Acoustiques. PhD Thesis. Université de Grenoble, Grenoble, France and Università degli Studi Roma Tre, Rome, Italy.

Signorello, R. (2014b). The biological function of fundamental frequency in leaders’ charismatic voices. The Journal of the Acoustical Society of America 136 (4), 2295-2295.

Ohala, J. (1984). An ethological perspective on common cross-language utilization of F0 of voice. Phonetica, 41(1):1–16.

Puts, D. A., Hodges, C. R., Cárdenas, R. A. et Gaulin, S. J. C. (2007). Men’s voices as dominance signals : vocal fundamental and formant frequencies influence dominance attributions among men. Evolution and Human Behavior, 28(5):340–344.

3pSC10 – Does increasing the playback speed of men’s and women’s voices reduce their intelligibility by the same amount?

Eric M. Johnson – eric.martin.johnson@utah.edu
Sarah Hargus Ferguson – sarah.ferguson@hsc.utah.edu

Department of Communication Sciences and Disorders
University of Utah
390 South 1530 East, Room 1201
Salt Lake City, UT 84112

Popular version of poster 3pSC10, “Gender and rate effects on speech intelligibility.”
Presented Wednesday afternoon, May 25, 2016, 1:00, Salon G
171st ASA Meeting, Salt Lake City

Older adults seeking hearing help often report having an especially hard time understanding women’s voices. However, this anecdotal observation doesn’t always agree with the findings from scientific studies. For example, Ferguson (2012) found that male and female talkers were equally intelligible for older adults with hearing loss. Moreover, several studies have found that young people with normal hearing actually understand women’s voices better than men’s voices (e.g. Bradlow et al., 1996; Ferguson, 2004). In contrast, Larsby et al. (2015) found that, when listening in background noise, groups of listeners with and without hearing loss were better at understanding a man’s voice than a woman’s voice. The Larsby et al. data suggest that female speech might be more affected by distortion like background noise than male speech is, which could explain why women’s voices may be harder to understand for some people.

We were interested to see if another type of distortion, speeding up the speech, would have an equal effect on the intelligibility of men and women. Speech that has been sped up (or time-compressed) has been shown to be less intelligible than unprocessed speech (e.g. Gordon-Salant & Friedman, 2011), but no studies have explored whether time compression causes an equal loss of intelligibility for male and female talkers. If an increase in playback speed causes women’s speech to be less intelligible than men’s, it could reveal another possible reason why so many older adults with hearing loss report difficulty understanding women’s voices. To this end, our study tested whether the intelligibility of time-compressed speech decreases for female talkers more than it does for male talkers.

Using 32 listeners with normal hearing, we measured how much the intelligibility of two men and two women went down when the playback speed of their speech was increased by 50%. These four talkers were selected based on their nearly equivalent conversational speaking rates. We used digital recordings of each talker and made two different versions of each sentence they spoke: a normal-speed version and a fast version. The software we used allowed us to speed up the recordings without making them sound high-pitched.

Audio sample 1: A sentence at its original speed.

Audio sample 2: The same sentence sped up to 50% faster than its original speed.

All of the sentences were presented to the listeners in background noise. We found that the men and women were essentially equally intelligible when listeners heard the sentences at their original speed. Speeding up the sentences made all of the talkers harder to understand, but the effect was much greater for the female talkers than the male talkers. In other words, there was a significant interaction between talker gender and playback speed. The results suggest that time-compression has a greater negative effect on the intelligibility of female speech than it does on male speech.

johnson & ferguson fig 1

Figure 1: Overall percent correct key-word identification performance for male and female takers in unprocessed and time-compressed conditions. Error bars indicate 95% confidence intervals.

These results confirm the negative effects of time-compression on speech intelligibility and imply that audiologists should counsel the communication partners of their patients to avoid speaking excessively fast, especially if the patient complains of difficulty understanding women’s voices. This counsel may be even more important for the communication partners of patients who experience particular difficulty understanding speech in noise.

 

  1. Bradlow, A. R., Torretta, G. M., and Pisoni, D. B. (1996). “Intelligibility of normal speech I: Global and fine-grained acoustic-phonetic talker characteristics,” Speech Commun. 20, 255-272.
  2. Ferguson, S. H. (2004). “Talker differences in clear and conversational speech: Vowel intelligibility for normal-hearing listeners,” J. Acoust. Soc. Am. 116, 2365-2373.
  3. Ferguson, S. H. (2012). “Talker differences in clear and conversational speech: Vowel intelligibility for older adults with hearing loss,” J. Speech Lang. Hear. Res. 55, 779-790.
  4. Gordon-Salant, S., and Friedman, S. A. (2011). “Recognition of rapid speech by blind and sighted older adults,” J. Speech Lang. Hear. Res. 54, 622-631.
  5. Larsby, B., Hällgren, M., Nilsson, L., and McAllister, A. (2015). “The influence of female versus male speakers’ voice on speech recognition thresholds in noise: Effects of low-and high-frequency hearing impairment,” Speech Lang. Hear. 18, 83-90.

2aSC7 – Effects of aging on speech breathing

Simone Graetzer, PhD. – sgraetz@msu.edu
Eric J. Hunter, PhD. – ejhunter@msu.edu

Voice Biomechanics and Acoustics Laboratory
Department of Communicative Sciences and Disorders
College of Communication Arts & Sciences
Michigan State University
1026 Red Cedar Road
East Lansing, MI 48824

Popular version of paper 2aSC7, entitled: “A longitudinal study of the effects of aging on speech breathing: Evidence of decreased expiratory volume in speech recordings”
Presented Tuesday morning, May 24, 2016, 8:00 – 11:30 AM, Salon F
171st ASA Meeting, Salt Lake City

Content
The aging population is the fastest growing segment of the population. Some voice, speech and breathing disorders occur more frequently as individuals age. For example, lung capacity diminishes in older age due to loss of lung elasticity, which places an upper limit on utterance duration. Further, decreased lung and diaphragm elasticity and muscle strength can occur, and the rib cage can stiffen, leading to reductions in lung pressure and the volume of air that can be expelled by the lungs (‘expiratory volume’). In the laryngeal system, tissues can break down and cartilages can harden, causing more voice breaks, increased hoarseness or harshness, reduced loudness, and pitch changes.

Our study attempted to identify the normal speech and respiratory changes that accompany aging in healthy individuals. Specifically, we examined how long individuals could speak in a single breath group using a series of speeches from six individuals (three females and three males) over the course of many years (between 18 and 49 years). All speakers had been previously recorded in similar environments giving long, monologue speeches. All but one speaker gave their addresses at a podium using a microphone, and most were longer than 30 minutes each. The speakers’ ages ranged between 43 (51 on average) and 98 (84 on average) years. Samples of five minutes in length were extracted from each recording. Subsequently, for each subject, three raters identified the durations of exhalations during speech in these samples.

Two figures illustrate how the breath groups changed with age for one of the women (Figure 1) and one of the men (Figure 2). We found a change in the speech breathing, which might be caused by a less flexible rib cage and the loss of vital capacity and expiratory volume. In males especially, it may also have been caused by poor closure of the vocal folds, resulting in more air leakage during speech. Specifically, we found a decreased breath group duration for all male subjects after 70 years, with overall durations averaging between 1 and 3.5 seconds. Importantly, the point of change appeared to occur between 60 and 65. For females, this change occurred at a later time, between 60-70 years, with durations averaging between 1.5 and 3.5 seconds.

figure_Page_1 - speech breath

Figure 1 For one of the women talkers, the speech breath groups were measured and plotted to correspond with age. The length of the speech breath groups begins to decrease at about 68 years of age.

figure_Page_2 - speech breath

Figure 2 For one of the men talkers, the speech breath groups were measured and plotted to correspond with age. The length of the speech breath groups begins to decrease at about 66 years of age.

The study results indicate decreases in speech breath group duration for most individuals as their age increased (especially from 65 years onwards), consistent with the age-related decline in expiratory volume reported in other studies. Typically, the speech breath group duration of the six subjects decreased from ages 65 to 70 years onwards. There was some variation between individuals in the point at which the durations started to decrease. The decreases indicate that, as they aged, speakers could not sustain the same number of words in a breath group and needed to inhale more frequently while speaking.

Future studies involving more participants may further our understanding of normal age-related changes vs. pathology, but such a corpus of recordings must first be constrained on the basis of communicative intent, venues, knowledge of vocal coaching, and related information.

References
Hunter, E. J., Tanner, K., & Smith, M. E. (2011), Gender differences affecting vocal health of women in vocally demanding careers. Logopedics Phoniatrics Vocology, 36(3), 128-136.

Janssens, J.P. , Pache, J.C. and Nicod, L.P. (1999), Physiological changes in respiratory function associated with ageing. European Respiratory Journal, 13, 197–205.

Acknowledgements
We acknowledge the efforts of Amy Kemp, Lauren Glowski, Rebecca Wallington, Allison Woodberg, Andrew Lee, Saisha Johnson, and Carly Miller. Research was in part supported by the National Institute On Deafness And Other Communication Disorders of the National Institutes of Health under Award Number R01DC012315. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

1pAA6 – Listening for solutions to a speech intelligibility problem

Anthony Hoover, FASA – thoover@mchinc.com
McKay Conant Hoover, Inc.
Acoustics & Media Systems Consultants
5655 Lindero Canyon Road, Suite 325
Westlake Village, CA 91362

Popular version of paper 1pAA6, “Listening for solutions to a speech intelligibility problem”
Presented Monday afternoon, May 23, 2016, 2:45 in Salon E
171st ASA Meeting in Salt Lake City, UT

Loudspeakers for sound reinforcement systems are designed to project their sound in specific directions. Sound system designers take advantage of the “directivity” characteristics of these loudspeakers, aiming their sound uniformly throughout seating areas, while avoiding walls and ceilings and other surfaces from which undesirable reflections could reduce clarity and fidelity.

Many high-quality sound reinforcement loudspeaker systems incorporate horn loudspeakers that provide very good control, but these are relatively large and conspicuous.   In recent years, “steerable column arrays” have become available, which are tall but narrow, allowing them to better blend into the architectural design.  These are well suited to the frequency range of speech, and to some degree their sound output can be steered up or down using electronic signal processing.

Figure 1 - steerable column arrays - speech intelligibility

Figure 1. steerable column arrays

Figure 1 illustrates the steering technique, with six individual loudspeakers in a vertical array.  Each loudspeaker generates an ever-expanding sphere of sound (in this figure, simplified to show only the horizontal diameter of each sphere), propagating outward at the speed of sound, which is roughly 1 foot per millisecond.  In the “not steered” column, all of the loudspeakers are outputting their sound at the same time, with a combined wavefront spreading horizontally, as an ever-expanding cylinder of sound.  In the “steered downward” column, the electronic signal to each successively lower loudspeaker is slightly delayed; the top loudspeaker outputs its sound first, while each lower loudspeaker in turn outputs its sound just a little later, so that the sound energy is generally steered slightly downward. This steering allows for some flexibility in positioning the loudspeaker column.  However, these systems only offer some vertical control; left-to-right projection is not well controlled.

Steerable column arrays have reasonably resolved speech reinforcement issues in many large, acoustically-problematic spaces. Such arrays were appropriate selections for a large worship space, with a balcony and a huge dome, that had undergone a comprehensive renovation.  Unfortunately, in this case, problems with speech intelligibility persisted, even after multiple adjustments by reputable technicians, who had used their instrumentation to identify several sidewall surfaces that appeared to be reflecting sound and causing problematic echoes. They recommended additional sound absorptive treatment that could adversely affect visual aesthetics and negatively impact the popular classical music concerts.

Upon visiting the space as requested to investigate potential acoustical treatments, speech was difficult to understand in various areas on the main floor.  While playing a click track (imagine a “pop” every 5 seconds) through the sound system, and listening to the results around the main floor, we heard strong echoes emanating from the direction of the surfaces that had been recommended for sound-absorptive treatment.

Nearby those surfaces, additional column loudspeakers had been installed to augment coverage of the balcony seating area.  These balcony loudspeakers were time-delayed (in accordance with common practice, to accommodate the speed of sound) so that they would not produce their sound until the sound from the main loudspeakers had arrived at the balcony. With proper time delay, listeners on the balcony would hear sound from both main and balcony loudspeakers at approximately the same time, and thereby avoid what would otherwise seem like an echo from the main loudspeakers.

With more listening, it became clear that the echo was not due to reflections from the walls at all, but rather from the delayed balcony loudspeakers’ sound inadvertently spraying back to the main seating area.  These loudspeakers cannot be steered in a multifaceted manner that would both cover the balcony and avoid the main floor.

We simply turned off the balcony loudspeakers, and the echo disappeared.  More importantly, speech intelligibility improved significantly throughout the main floor. Intelligibility throughout the balcony remained acceptable, albeit not quite as good as with the balcony loudspeakers operating.

The general plan is to remove the balcony loudspeakers and relocate them to the same wall as the main loudspeakers, but steer them to cover the balcony.

Adding sound-absorptive treatment on the side walls would not have solved the problem, and would have squandered funds while impacting the visual aesthetics and classical music programming.  Listening for solutions proved to be more effective than interpreting test results from sophisticated instrumentation.