Connor Centner – connor.centner@louisville.edu
Twitter: @ConnorCentner
University of Louisville School of Medicine
University of Louisville Bioengeering
Louisville, KY 40202
United States
Popular version of 1pBA14 – Miniature Histotripsy Device to Treat Human Pathologies
Presented at the 187th ASA Meeting
Read the abstract at https://eppro01.ativ.me//web/index.php?page=Session&project=ASAFALL24&id=3771191
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Imagine a world where treating cancer doesn’t mean enduring invasive surgeries, long hospital stays, or intense side effects. Many researchers around the globe are working tirelessly to make that vision a reality. One approach could be ultrasound. Ultrasound has traditionally been associated with imaging, such as during pregnancy or heart examinations. Over the past few decades, however, scientists have reimagined its role in medicine, exploring ultrasound as a therapeutic tool to treat various diseases, including cancer. Histotripsy takes this idea to new heights. By directing focused ultrasound waves right into a tumor, we can quickly disrupt and break down cancer cells by forming tiny bubbles. When these bubbles collapse, they can collapse at speeds of several hundred meters per second, approaching speeds of a supersonic aircraft. Due to the focused nature of the device, it can protect nearby healthy cells. In fact, histotripsy is already FDA to treat certain cancers, such as liver cancer, and has shown tremendous success.
Yet, its application for colon cancer or lung cancer have yet to be fully explored. To target these cancers, a smaller device had to be developed. In fact, the device diameter is about half that of a penny (Figure 1). This would allow our device to be used with an endoscope, which means doctors can reach the tumor inside the body without needing to make big cuts.
This prototype device was recently studied in our lab. To explore the initial effectiveness of the device, lung and colon cancer cells were rapidly treated (2 minutes or less of treatment time). In fact, we were able to kill over 60% of the cells in sample (Figure 2). This highlights the versatility of the histotripsy device in treating various cancers and underscores its promising potential for a range of applications in cancer therapy. With continued research and development, this innovative technology may help improve cancer treatment and offer new hope to those affected by this disease.