What fish species are singing along the southern Australian continental shelf?
Lauren Amy Hawkins – laurenhawkins799@gmail.com
Centre for Marine Science and Technology, Curtin University, Bentley, Western Australia, 6102, Australia
Benjamin Saunders
School of Molecular and Life Sciences
Curtin University
Bentley, Western Australia, Australia
Christine Erbe, Iain Parnum, Chong Wei, and Robert McCauley
Centre for Marine Science and Technology
Curtin University
Bentley, Western Australia, Australia
Popular version of 5aAB6 – The search to identify the fish species chorusing along the southern Australian continental shelf
Presented at the 185 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0023649
Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.
Unknown fish species are singing in large aggregations along almost the entire southern Australian continental shelf on a daily basis, yet we still have little idea of what species these fish are or what this means to them. These singing aggregations are known as fish choruses, they occur when many individuals call continuously for a prolonged period, producing a cacophony of sound that can be detected kilometres away. It is difficult to identify fish species that chorus in offshore marine environments. The current scientific understanding of the sound-producing abilities of all fish species is limited and offshore marine environments are challenging to access. This project aimed to undertake a pilot study which attempted to identify the source species of three fish chorus types (shown below) detected along the southern Australian continental shelf off Bremer Bay in Western Australia from previously collected acoustic recordings.
Each fish chorus type occurred over the hours of sunset, dominating the soundscape within unique frequency bands. Have a listen to the audio file below to get a feeling for how noisy the waters off Bremer Bay become as the sun goes down and the fish start singing. The activity of each fish chorus type changed over time, indicating seasonality in presence and intensity. Chorus I and II demonstrated a peak in calling presence and intensity over late winter to early summer, while Chorus III demonstrated peak calling over late winter to late spring. This informed the sampling methodology of the pilot study, and in December 2019, underwater acoustic recorders and unbaited video recorders were deployed simultaneously on the seafloor along the continental shelf off Bremer Bay to attempt to collect evidence of any large aggregations of fish species present during the production of the fish choruses. Chorus I and the start of Chorus II were detected on the acoustic recordings, corresponding with video recordings of large aggregations of Red Snapper (Centroberyx gerrardi) and Deep Sea Perch (Nemadactylus macropterus). A spectrogram of the acoustic recordings and snapshots from the corresponding underwater video recordings are shown below.
The presence of large aggregations of Red Snapper present while Chorus I was also present was of particular interest to the authors. Previous dissections of this species had revealed that Red Snapper possessed anatomical features that could support sound production through the vibration of their swimbladder using specialised muscles. To explore this further, computerized tomography (CT) scans of several Red Snapper specimens were undertaken. We are currently undertaking 3D modelling of the sound-producing mechanisms of this species to compute the resonance frequency of the fish to better understand if this species could be producing Chorus I.
Listening to fish choruses can tell us about where these fish live, what habitats they use, their spawning behaviour, their feeding behaviour, can indicate their biodiversity, and in certain circumstances, can determine the local abundance of a fish population. For this information to be applied to marine spatial planning and fish species management, it is necessary to identify which fish species are producing these choruses. This pilot study was the first step in an attempt to develop an effective methodology that could be used to address the challenging task of identifying the source species of fish choruses present in offshore environments. We recommend that future studies take an integrated approach to species identification, including the use of arrays of hydrophones paired with underwater video recorders.