1pNS2 – Soundscape, traffic safety, and requirements for public health – Brigitte Schulte-Fortkamp

Soundscape, traffic safety, and requirements for public health

Brigitte Schulte-Fortkamp – b.schulte-fortkamp@tu-berlin.de

Technical University Berlin
Psychoacoustics and Noise Effects
Einsteinufer 25
10587 Berlin -Germany

Popular version of paper 1pNS2

Monday, May 13, 2019

177th ASA Meeting in Louisville, KY

 

When you think about your safety and health with regard to road traffic you may not immediately think about avoidable noise pollution. But: The World Health Organization (WHO) has published a new Noise Guideline for the European Region in October 2018. The focus is set on health effects caused by noise from different sources whereby as transportation noise as road traffic-, railway- and aircraft-noise play the major role.

The use of environmentally friendly electrical vehicles can for sure decrease the road traffic noise pollution as a contribution to public health.  But for safety reason which it is of course also a public health issue there is also policy action for regulations of the use of alert signals.  There is a worldwide consideration about how this could may be counterproductive to a harmonic and healthy soundscape or even support those.

(Regulation (EU) No 540/2014 of the European Parliament 2018, U.S. National Highway Traffic Safety Administration 2018,  Japan Guidelines on Electric vehicle warning sounds 2010)

Soundscape is the new way to understand people’s reaction to the sounds of the world. Soundscape is a construct of human perception that must be understood as a relationship between human beings, acoustic environments, and society. Our focus in this field is here on co-creation in acoustics, architecture, medicine, and urban planning.  It is combined with analysis, advice, and feedback from the ‘users of any acoustic environment as the primary ‘experts’ of any environment – to find creative and responsive solutions for protection of living areas and to enhance the quality of life.

The Soundscape concept is introduced as a scope to rethink the evaluation of noise pollution. The challenge is to account for the perceptual dimension and to consider the limits of acoustic measurements.

 

Figure 1– The recent international standard ISO 12913-1,2,3 Acoustics – Soundscape

 

Figure 2 – Definition of Soundscape

  • acoustic environment as perceived or experienced and/or understood by people, in context

Soundscape as defined in 2014 by the International Organization for Standardization (ISO)

 

Figure 3 – Elements in the perceptual construct of soundscape

 

Context

The context includes the interrelationships between person and activity and place, in space and time. The context may influence soundscape through (1) the auditory sensation, (2) the interpretation of auditory sensation, and (3) the responses to the acoustic environment

 

The contribution of Soundscape (research) regarding public health means to focus on the perception as a key issue. With Soundscape it is suggested to exploring noise in its complexity and its ambivalence.  Soundscape studies investigate and find increasingly better ways to measure and hone the acoustic environment.

Figure 4 – Soundscape studies

Figure 5 – Soundscape model including quality of life and health

Otherwise, the new technology in the development of electrical vehicles causes policy action with regulations calling for safety reasons. Regulations and needs have to be considered with respect to the public health recommendations on exposure to environmental noise and soundscapes.

There have to be solutions that follow the need outlined in the WHO guidelines to “provide robust public health advice underpinned by evidence, which is essential to drive policy action that will protect communities from the adverse effects of noise”.

The process of tuning of urban areas with respect to the expertise of people’s mind and quality of life is related to the strategy of co-creation and provides the theoretical frame with regard to the solution of e.g. the change in an area. In other words: Approaching the field on traffic safety and public health in this holistic manner is generally needed.

To establish the Soundscape concept and the Soundscape approach, there is the need to advise the respective local actors and stakeholders in communities to using the resources given with respect to future generations and socio-cultural, aesthetic and economic effects as well. It was widely discussed in earlier publications that a platform is needed for stakeholders for co-creation and find common decisions. Moreover, the current approach within the standardization of Soundscapes have provided a big step towards enhancing the quality of life for people.

 

REFERENCES

WHO Environmental Noise Guidelines for the European Region (2018)

  1. Kang, J., B. Schulte-Fortkamp (Eds.) Soundscape and the built environment, CRC Press, Taylor & Francis Group, Boca Raton. (2016)
  2. Schulte-Fortkamp, (2013). Soundscape – a matter of human resources, Internoise 2013, Proc., Innsbruck, Austria
  3. Schulte-Fortkamp, J. Kang (editors) Special Issue on Soundscape, JASA 2012

Kang, J., Aletta, F., Gjestland, T.T., Brown, L.A., Botteldooren, D., Schulte-Fortkamp, B., Lercher, P., Kamp, I.van., Genuit, K., Fiebig, A., Bento Coelho, L., Maffei, L., Lavia, L., (2016). Ten questions on the soundscapes of the built environment, Building and Environment, Vol. 108 (1), 284-294

  1. M. Schafer, “The Soundscape. Our sonic environment and the tuning of the world.” Rochester, Vermont: Destiny Books, (1977).
  2. Hollstein, “Qualitative approaches to social reality: the search for meaning” in: John Scott & Peter J. Carrington (Eds.): Sage handbook of social network analysis. London/New Delhi: Sage. (2012)
  3. Hiramatsu, “Soundscape: The Concept and Its Significance in Acoustics,” Proc. ICA, Kyoto, 2004.
  4. Fiebig, B. Schulte-Fortkamp, K. Genuit, „New options for the determination of environmental noise quality”, 35th International Congress and Exposition on Noise Control Engineering INTER-NOISE 2006, 04.-06.December 2006, Honolulu, HI.
  5. Lercher, B. Schulte-Fortkamp, “Soundscape and community noise annoyance in the context of environmental impact assessments,” Proc. INTER-NOISE 2003, 2815-2824, (2003).
  6. Schulte-Fortkamp, D. Dubois: (editors) Acta Acustica united with Acustica, Special Issue, Recent advances in Soundscape research, Vol 92 (6), (2006).

Regulation (EU) No 540/2014 of the European Parliament and of the Council of 16 April 2014 on the sound level of motor vehicles and of replacement silencing systems, and amending Directive 2007/46/EC and repealing Directive 70/157/EEC (OJ L 158, 27.5.2014)

Regulation No 138 of the Economic Commission for Europe of the United Nations (UNECE) — Uniform provisions concerning the approval of Quiet Road Transport Vehicles with regard to their reduced audibility [2017/71] (OJ L 9, 13.1.2017)

 

 

2aNSa – Soundscapes and human restoration in green urban areas – Irene van Kamp, Elise van Kempen, Hanneke Kruize, Wim Swart

Soundscapes and human restoration in green urban areas
Irene van Kamp, (irene.van.kamp@rivm.nl)
Elise van Kempen,
Hanneke Kruize,
Wim Swart
National Institute for Public Health and the Environment
Netherlands
Pobox 1 Postvak 10
3720 BA BILTHOVEN
Netherlands
Phone +31629555704

Popular version of paper in session 2aNSa, “Soundscapes and human restoration in green urban areas”
Presented Tuesday morning, May 19, 2015, 9:35 AM, Commonwealth 1
169th ASA Meeting, Pittsburgh

Worldwide there is a revival of interest in the positive effect of landscapes, green and blue space, open countryside on human well-being, quality of life, and health especially for urban dwellers. However, most studies do not account for the influence of the acoustic environment in these spaces both in a negative and positive way. One of the few studies in the field, which was done by Kang and Zhang (2010) identified relaxation, communication, dynamics and spatiality as the key factors in the evaluation of urban soundscapes. Remarkable is their finding that the general public and urban designers clearly value public space very different. The latter had a much stronger preference for natural sounds and green spaces than the lay-observers. Do we as professionals tend to exaggerate the value of green and what characteristics of urban green space are key to health, wellbeing and restoration? And what role does the acoustic quality and accompanying social quality play in this? In his famous studies on livable streets Donald Appleyard concluded that in heavy traffic streets the number of contacts with friends, acquaintances and the amount of social interaction in general was much lower. Also people in busy streets had a tendency to describe their environment as being much smaller than their counterparts in quiet streets did. In other words, the acoustic quality affects not only our wellbeing and behavior but also our sense of territory, social cohesion and social interactions. And this concerns all of us: citing Appleyard “nearly everyone in the world lives in a street”.

There is evidence that green or natural areas/wilderness/ or urban environments with natural elements as well as areas with a high sound quality can intrinsically provide restoration through spending time there. Also merely the knowledge that such quiet and green places are available seems to work as a buffer effect between stress and health (Van Kamp, Klaeboe, Brown, and Lercher, 2015 : in Jian Kang and Brigitte Schulte-Fortkamp (Eds) in press).

Recently a European study was performed into the health effect of access and use of green area in four European cities of varying size in Spain, the UK, Netherlands and Lithuania)

At the four study centers people were selected from neighborhoods with varying levels of socioeconomic status and green and blue space. By means of a structured interview information was gathered about availability, use and importance of green space in the immediate environment as well as the sound quality of favorite green areas used for physical activity, social encounters and relaxation. Data are also available about perceived mental/physical health and medication use. This allowed for analyzing the association between indicators of green, restoration and health, while accounting for perceived soundscapes in more detail. In general there are four mechanisms assumed that lead from green and tranquil space to health: via physical activity, via social interactions and relaxation and finally via reduced levels of traffic related air and noise pollution. This paper will explore the role of sound in the process which leads from access and use of green space to restoration and health. So far this aspect has been understudied. There is some indication that certain areas contribute to restoration more than others. Most studies address the restorative effects of natural recreational areas outside the urban environment. The question is whether natural areas within, and in the vicinity of, urban areas contribute to psycho-physiological and mental restoration after stress as well. Does restoration require the absence of urban noise?

 

Urban

Example of an acoustic environment – a New York City Park – with potential restorative outcomes (Photo: A.L. Brown)

Tags: health, soundscapes, people, environment, green, urban

5aNS6 – The Perceived Annoyance of Urban Soundscapes – Adam Craig

The term ‘soundscape’ is widely used to describe the sonic landscape and can be considered the auditory equivalent of a visual landscape. Current soundscape research looks into the view of sound assessment in terms of perception and has been the subject of large scale projects such as the Positive Soundscapes Project (Davies et al. 2009) i.e. the emotional attributes associated with particular sounds. This research addresses the limitations of current noise assessment methods by taking into account the relationship between the acoustic environment and the emotional responses and behavioural characteristics of people living within it. Related research suggests that a variety of objective and subjective factors influence the effects of exposure to noise, including age, locale, cross-cultural differences (Guyot at el. 2005) and the time of year (Yang and Kang, 2005). A key aspect of this research area is the subjective effect of the soundscape on the listener. This paradigm emphasises the subjective perception of sound in an environment – and whether it is perceived as being positive or negative. This approach dovetails with advancing sound and music classification research which aims to categorise sounds in terms of their emotional impact on the listener.

Annoyance is one of the main factors which contribute to a negative view of environmental noise, and can lead to stress-related health conditions. Subjective perception of environmental sounds is dependent upon a variety of factors related to the sound, the geographical location and the listener. Noise maps used to communicate information to the public about environmental noise in a given geographic location are based on simple noise level measurements, and do not include any information regarding how perceptually annoying or otherwise the noise might be.

craig_figure1

Figure 1 Selected locations for recording – image courtesy of Scottish Noise Mapping

This study involved subjective assessment by a large panel of listeners (N=167) of a corpus of sixty pre-recorded urban soundscapes collected from a variety of locations around Glasgow City Centre (see figure 1). Binaural recordings were taken at three points during each 24 hour period in order to capture urban noise during day, evening and night. Perceived annoyance was measured using Likert and numerical scales and each soundscape measured in terms of arousal and positive/negative valence (see figure 2).

craig_figure2

Figure 2 Arousal/Valance Circumplex Model Presented in Listening Tests

Coding of each of the soundscapes would be essential process in order to test the effects of the location on the variables provided by the online survey namely annoyance score (verbal), annoyance score (numeric), quadrant score, arousal score, and valence score. The coding was based on the environment i.e. urban (U), semi-open (S), or open (O); the density of traffic i.e. high (H), mid (M), low (L); and the distance form the main noise source (road traffic) using two criteria >10m (10+) and <10m (10-). The coding resulted in eight different location types; UH10-, UH10+, UM10+, UL10-, SM10+, SL10-, SL10+, and OL10+.

To capture quantitative information about the actual audio recordings themselves, the MIRToolkit for MATLAB was used to extract acoustical features from the dataset. Several functions were identified that could be meaningful for measuring the soundscapes in terms of loudness, spectral shape, but also rhythm, which could be thought of in not so musical terms but as the rate and distribution of events within a soundscape.

As expected, correlations between extracted features and locations suggest where there are many transient events, higher energy levels, and where the type of events include harsh and dissonant sounds i.e. heavy traffic, resulted in higher annoyance scores and higher arousal scores but perceived more negatively than quiet areas. In those locations where there are fewer transient events, lower energy levels, and there are less harsh and possibly more positive sounds i.e. birdsong, resulted in lower annoyance scores and lower arousal scores as well as being perceived more positively than busy urban areas. The results shed light on the subjective annoyance of environmental sound in a range of locations and provide the reader with an insight as to what psychoacoustic features may contribute to these views of urban soundscapes.

References

Davies, W., Adams, M., Bruce, N., Cain, R., Jennings, P., Carlyle, A., … Plack, C. (2009, October 26). A positive soundscape evaluation system. Retrieved from http://usir.salford.ac.uk/2468/1/Davies_et_al_soundscape_evaluation_euronoise_2009.pdf

Guyot, F., Nathanail, C., Montignies, F., & Masson, B. (2005). Urban sound environment quality through a physical and perceptive classification of sound sources : a cross-cultural study Methodology.

Scottish Noise Mapping (2014). Scottish Noise Mapping: Map Search [Online] http://gisapps.aecomgis.com/scottishnoisemapping_p2/default.aspx#/Main. [Accessed 20th June 2014]

Yang, W., & Kang, J. (2005). Soundscape and Sound Preferences in Urban Squares: A Case Study in Sheffield. Journal of Urban Design, 10(1), 61–80. doi:10.1080/13574800500062395

 

Adam Craig – Adam.Craig@gcu.ac.uk

Don Knox – D.Knox@gcu.ac.uk
David Moore – J.D.Moore@gcu.ac.uk

 

Glasgow Caledonian University
School of Engineering and Built Environment
70 Cowcaddens Road
Glasgow
United Kingdom
G4 0BA

 

Popular version of paper 5aNS6

Presented Friday morning, October 31st 2014

168th ASA Meeting, Indianapolis