École de technologie supérieure, Université du Québec, Montréal, Québec, H3C 1K3, Canada
Rachel Bouserhal, Valentin Pintat & Alexis Pinsonnault-Skvarenina
École de technologie supérieure, Université du Québec
Popular version of 1pNSb12 – Immersive Auditory Awareness: A Smart Earphones Platform for Education on Noise-Induced Hearing Risks
Presented at the 186th ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0026825
–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–
Ever thought about how your hearing might change in the future based on how much and how loudly you listen to music through earphones? And how would knowing this affect your music listening habits? We developed a tool called InteracSon, which is a digital earpiece you can wear to help you better understand the risks of losing your hearing from listening to loud music trough earphones.
In this interactive platform, you can first select your favourite song, and play it through a pair of earphones at your preferred listening volume. After providing InteracSon with the amount of time you usually spend listening to music, it calculates the “Age of Your Ears”. This tells you how much your ears have aged due to your music listening habits. So even if you’re, say, 25 years old, your ears might be like they’re 45 years old because of all that loud music!
Picture of the “InteracSon” platform during calibration on an acoustic manikin. Photo by V. Pintat, ÉTS/ CC BY
To really demonstrate what this means, InteracSon provides you with an immersive experience of what it’s like to have hearing loss. It has a mode where you can still hear what’s going on around you, but it filters sounds based on what your ears might be like with hearing loss. You can also hear what tinnitus, a ringing in the ears, sounds like, which is a common problem for people who listen to music too loudly. You can even listen to your favorite song again, but this time it would be altered to simulate your predicted hearing loss.
With more than 60% of adolescents listening to their music at unsafe levels, and nearly 50% of them reporting hearing-related problems, InteracSon is a powerful tool to teach them about the adverse effects of noise exposure on hearing and to promote awareness about how to prevent hearing loss.
The Acoustical Society of America (ASA) takes pride in its mission to generate, disseminate, and promote the knowledge and practical applications of acoustics. This also aligns with one of the objectives of World Hearing Day 2024; to reshape public perceptions surrounding ear and hearing based on accurate, evidence-based information. In support of World Hearing Day[i], we would like to draw attention to a couple Special Issues of the Journal of the Acoustical Society of America (JASA) that delve into the clinical and investigational facets of noise-induced hearing disorders.
This special issue provides valuable insights into cutting-edge clinical and investigational tools designed to sensitively detect noise injury in the cochlea. Emphasizing the importance of sound exposure monitoring and protection, the collection explores tools available for characterizing individual noise hazards and attenuation. Throughout, there is a concentrated focus on the suitability of diverse functional measures for hearing and balance-related clinical trials, including considerations for boothless auditory test technology in decentralized clinical trials. Furthermore, the issue offers guidance on designing clinical trials to prevent noise-induced hearing deficits such as hearing loss and tinnitus.
Noise-induced hearing loss (NIHL) stands as a common injury for service members and civilian workers exposed to noise. This special issue focuses on translating knowledge from animal models to real-world environments. Contributors delve into the cellular and molecular events in the inner ear post-noise exposure, exploring potential pharmaceutical prevention of NIHL. The collection includes insights into methods and models used during preclinical assessments of investigational new drug agents, as well as information about human populations at risk for NIHL.
Together, these special issues provide an exploration of noise-induced hearing disorders, offering valuable insights and potential solutions for both clinical and real-world settings. Be sure the share this post to make ear and hearing care a reality for all! For more information about World Hearing Day 2024, visit https://www.who.int/campaigns/world-hearing-day/2024.
[i]Due to an unexpected site wide issue, the posting of this content was unfortunately delayed to after March 3, 2024.
Modern music can be inaccessible to those with hearing loss; sound mixing tweaks could make a difference.
Listeners with hearing loss can struggle to make out vocals and certain frequencies in modern music. Credit: Aravindan Joseph Benjamin
WASHINGTON, August 22, 2023 – Millions of people around the world experience some form of hearing loss, resulting in negative impacts to their health and quality of life. Treatments exist in the form of hearing aids and cochlear implants, but these assistive devices cannot replace the full functionality of human hearing and remain inaccessible for most people. Auditory experiences, such as speech and music…click to read more
Matthew Neal – mathew.neal.2@louisville.edu Instagram: @matthewneal32
Department of Otolaryngology and other Communicative Disorders University of Louisville Louisville, Kentucky 40208 United States
Popular version of 3pID2 – A hearing aid “test drive”: Using virtual acoustics to accurately demonstrate hearing aid performance in realistic environments Presented at the 184 ASA Meeting Read the abstract at https://doi.org/10.1121/10.0018736
Many of the struggles experienced by patients and audiologists during the hearing aid fitting process stem from a simple difficulty: it is really hard to describe in words how something will sound, especially if you have never heard it before. Currently, audiologists use brochures and their own words to counsel a patient during the hearing aid purchase process, but a device often must be purchased first before patients can try them in their everyday life. This research project has developed virtual reality (VR) hearing aid demonstration software which allows patients to listen to what hearing aids will sound like in real-world settings, such as noisy restaurants, churches, and the places where they need devices the most. Using the system, patient can make more informed purchasing decisions and audiologists can program hearing aids to an individual’s needs and preferences more quickly.
This technology can also be thought of as a VR ‘test drive’ of wearing hearing aids, letting audiologists act as tour guides as patients try out features on a hearing aid. After turning a new hearing aid feature on, a patient will hear the devices update in a split second, and the audiologist can ask, “Was it better before or after the adjustment?” On top of getting device settings correct, hearing aid purchasers must also decide which ‘technology level’ they would like to purchase. Patients are given an option between three to four technology levels, ranging from basic to premium, with an added cost of around $1,000 per increase in level. Higher technology levels incorporate the latest processing algorithms, but patients must decide if they are worth the price, often without the ability to hear the difference. The VR hearing aid demonstration lets patients try out these different levels of technology, hear the benefits of premium devices, and decide if the increase in speech intelligibility or listening comfort is worth the added cost.
A patient using the demo first puts on a custom pair of wired hearing aids. These hearing aids are the same devices sold that are sold in audiology clinics, but their microphones have been removed and replaced with wires for inputs. The wires are connected back to the VR program running on a computer which simulates the audio in a given scene. For example, in the VR restaurant scene shown in Video 1, the software maps audio in a complex, noisy restaurant to the hearing aid microphones while worn by a patient. The wires send the audio that would have been picked up in the simulated restaurant to the custom hearing aids, and they process and amplify the sound just as they would in that setting. All of the audio is updated in real-time so that a listener can rotate their head, just as they might do in the real world. Currently, the system is being further developed, and it is planned to be implemented in audiology clinics as an advanced hearing aid fitting and patient counseling tool.
Video 1: The VR software being used to demonstrate the Speech in Loud Noise program on a Phonak Audeo Paradise hearing aid. The audio in this video is the directly recorded output of the hearing aid, overlaid with a video of the VR system in operation. When the hearing aid is switched to the Speech in Loud noise program on the phone app, it becomes much easier and more comfortable to listen to the frontal talker, highlighting the benefits of this feature in a premium hearing aid.
Daniel Fink – djfink01@aol.com
Twitter: @QuietCoalition
Board Chair, The Quiet Coalition, 60 Thoreau Street Suite 261, Concord, MA, 01742, United States
The Quiet Coalition is a program of Quiet Communities, Inc.
Popular version of 3pNS1-What is the safe noise level to prevent noise-induced hearing loss?, presented at the 183rd ASA Meeting.
Ear structures including outer, middle, and inner ear. Image courtesy of CDC
If something sounds loud, it’s too loud, and your auditory health is at risk. Why? The safe noise exposure level to protect your hearing- to prevent noise-induced hearing loss (NIHL) and other auditory disorders like tinnitus, also known as ringing in the ears, might be lower than you think. Noise damages delicate structures in the inner ear (cochlea). These include minuscule hair cells that actually perceive sound waves, transmitted from the air to the ear drum, then from bones to the fluid in the cochlea.
Figure 1. Normal hair cells (left) and hair cells damaged by noise (right). Image courtesy of CDC
[A little detail about sound and its measurement. Sound is defined as vibrations that travel through the air and can be heard when they reach the ear. The terms sound and noise are used interchangeably, although noise usually has a connation of being unpleasant or unwanted. Sound is measured in decibels. The decibel scale is logarithmic, meaning that an increase in sound or noise levels from 50 to 60 decibels (dB) indicates a 10-times increase in sound energy, not just a 20% increase as might be thought. A-weighting (dBA) is often used to adjust unweighted sound measurement to reflect the frequencies heard in human speech. This is used in occupational safety because the inability to understand speech after workplace noise exposure is the compensable industrial injury.]
Many audiologists still use the industrial-strength 85 dB noise level as the level at which auditory damage begins. This is incorrect. The 85 dBA noise level is the National Institute for Occupational Safety and Health (NIOSH) recommended occupational noise exposure level (REL). This does not protect all exposed workers from hearing loss. It is certainly not a safe noise level for the public. Because of the logarithmic decibel scale, 85 decibel sound has approximately 30 times more sound energy than the Environmental Protection Agency’s 70 decibel safe sound level, not about 20% as might be thought.
The EPA adjusted the NIOSH REL for additional exposure time- 24 hours a day instead of only 8 hours at work, 365 days a year instead of 240 days- to calculate that 70 dB average noise exposure for a day would prevent noise-induced hearing loss. This is the only evidence-based safe noise level I have been able to find.
But the real safe noise level to prevent NIHL must be lower than 70 dB. Why? EPA used the 40-year occupational exposure in its calculations. It didn’t adjust for lifetime exposure (approaching 80 years in the United States before the COVID pandemic). NIHL comes from cumulative noise exposure. This probably explains why so many older people have trouble hearing, the same way additional years of sun exposure explains the pigmentation changes and wrinkles in older people.
My paper explains that the NIOSH REL, from which EPA calculated the safe noise level, was based on studies of workers using limited frequency audiometry (hearing tests), only up to 4000 or 6000 Hertz (cycles per second). More sensitive tests of hearing, such as extended-range audiometry up to 20,000 Hertz, shows auditory damage in people with normal hearing on standard audiometry. Tests of speech in noise- how well someone can hear when background noise is added to the hearing test- also show problems understanding speech, even if standard audiometry is normal.
The actual noise level to prevent hearing loss may be as low as 55 dBA. This is the noise level needed for the human ear to recover from noise-induced temporary threshold shift, the muffling of sound one has after exposure to loud noise. If you’ve ever attended a rock concert or NASCAR race and found your hearing muffled the next morning, that’s what I’m talking about. (By the way, there is no such thing as temporary hearing loss. The muffling of sound, or temporary ringing in the ears after loud noise exposure, indicates that permanent auditory damage has occurred.)
55 dB is pretty quiet and would be difficult to achieve in everyday life in a modern industrialized society, where average daily noise exposures are near 75 dB. But I hope that if people know the real safe noise level to prevent hearing loss, they will avoid loud noise or use hearing protection if they can’t.