Moving Cargo, Keeping Whales: Investigating Solutions for Ship Noise Pollution

Vanessa ZoBell – vmzobell@ucsd.edu
Instagram: @vanessa__zobell

Scripps Institution of Oceanography, La Jolla, California, 92037, United States

John A. Hildebrand, Kaitlin E. Frasier
UCSD – Scripps Institution of Oceanography

Twitter & Instagram: @scripps_mbarc
Twitter & Instagram: @scripps_ocean

Popular version of 2pAB8 – Moving Cargo, Keeping Whales: Investigating Solutions for Ocean Noise Pollution
Presented at the 186th ASA Meeting
Read the abstract at https://eppro02.ativ.me/web/index.php?page=IntHtml&project=ASASPRING24&id=3678721

–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–

Ship Noise Figure 1. Image Courtesy of ZoBell, Vanessa M., John A. Hildebrand, and Kaitlin E. Frasier. “Comparing pre-industrial and modern ocean noise levels in the Santa Barbara Channel.” Marine Pollution Bulletin 202 (2024): 116379.

Southern California waters are lit up with noise pollution (Figure 1). The Port of Los Angeles and the Port of Long Beach are the first and second busiest shipping ports in the western hemisphere, supporting transits from large container ships that radiated noise throughout the region. Underwater noise generated by these vessels dominate ocean soundscapes, negatively affecting marine organisms, like mammals, fish, and invertebrates, who rely on sound for daily life functions. In this project, we modeled what the ocean would sound like without human activity and compared it with what it sounds like in modern day. We found in this region, which encompasses the Channel Islands National Marine Sanctuary and feeding grounds of the endangered northeastern Pacific blue whale, modern ocean noise levels were up to 15 dB higher than pre-industrial levels. This would be like having a picnic in a meadow versus having a picnic on an airport tarmac.

Reducing ship noise in critical habitats has become an international priority for protecting marine organisms. A variety of noise reduction techniques have been discussed, with some already operationalized. To understand the effectiveness of these techniques, broad stakeholder engagement, robust funding, and advanced signal processing is required. We modeled a variety of noise reduction simulations and identified effective strategies to quiet whale habitats in the Santa Barbara Channel region. Simulating conservation scenarios will allow more techniques to be explored without having to be implemented, saving time, money, and resources in the pursuit of protecting the ocean.