Listening for bubbles to make scuba diving safer

Joshua Currens – jcurrens@unc.edu

Department of Radiology; Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States

Popular version of 5aBAb8 – Towards real-time decompression sickness mitigation using wearable capacitive micromachined ultrasonic transducer arrays
Presented at the 186th ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0027683

–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–

Scuba diving is a fun recreational activity but carries the risk of decompression sickness (DCS), commonly known as ‘the bends’. This condition occurs when divers ascend too quickly, causing gas that has accumulated in their bodies to expand rapidly into larger bubbles—similar to the fizz when a soda can is opened.

To prevent this, divers will follow specific safety protocols that limit how fast they rise to the surface and stop at predetermined depths to allow bubbles in their body to dissipate. However, these are general guidelines that do not account for every person in every situation. This limitation can make it harder to prevent DCS effectively in all individuals without unnecessarily lengthening the time to ascend for a large portion of divers. Traditionally, these bubbles have only been detected with ultrasound technology after the diver has surfaced, so it is a challenge to predict DCS before it occurs (Figure 1b&c). Early identification of these bubbles could allow for the development of personalized underwater instructions to bring divers back to the surface and minimize the risk of DCS.

To address this challenge, our team is creating a wearable ultrasound device that divers can use underwater.

Ultrasound works by sending sound waves into the body and then receiving the echoes that bounce back. Bubbles reflect these sound waves strongly, making them visible in ultrasound images (Figure 1d). Unlike traditional ultrasound systems that are too large and not suited for underwater use, our innovative device will be compact and efficient, designed specifically for real-time bubble monitoring while diving.

Currently, our research involves testing this technology and optimizing imaging parameters in controlled environments like hyperbaric chambers. These are specialized rooms where underwater conditions can be replicated by increasing the inside pressure. We recently collected the first ultrasound scans of human divers during a hyperbaric chamber dive with a research ultrasound system, and next we plan to use it with our first prototype. With this data, we hope to find changes in the images that indicate where bubbles are forming. In the future, we plan to start testing our custom ultrasound tool on divers, which will be a big step towards continuously monitoring divers underwater, and eventually personalized DCS prevention.

divingFigure 1. (a) Scuba diver underwater. (b) Post-dive monitoring for bubbles using ultrasound. (c) Typical ultrasound system (developed using Biorender). (d) Bubbles detected in ultrasound images as bright spots in heart. Images courtesy of JC, unless otherwise noted.