Playability maps as aid for musicians

Vasileios Chatziioannou –

Department of Music Acoustics, University of Music and Performing Arts Vienna, Vienna, Vienna, 1030, Austria

Alex Hofmann
Department of Music Acoustics
University of Music and Performing Arts Vienna
Vienna, Vienna, 1030

Popular version of 5aMU6 – Two-dimensional playability maps for single-reed woodwind instruments
Presented at the 185 ASA Meeting
Read the abstract at

Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.

Musicians show incredible flexibility when generating sounds with their instruments. Nevertheless, some control parameters need to stay within certain limits for this to occur. Take for example a clarinet player. Using too much or too little blowing pressure would result in no sound being produced by the instrument. The required pressure value (depending on the note being played and other instrument properties) has to stay within certain limits. A way to study these limits is to generate ‘playability diagrams’. Such diagrams have been commonly used to analyze bowed-string instruments, but may be also informative for wind instruments, as suggested by Woodhouse at the 2023 Stockholm Music Acoustics Conference. Following this direction, such diagrams in the form of playability maps can highlight the playable regions of a musical instrument, subject to variation of certain control parameters, and eventually support performers in choosing their equipment.

One way to fill in these diagrams is via physical modeling simulations. Such simulations allow predicting the generated sound while slowly varying some of the control parameters. Figure 1 shows such an example, where a playability region is obtained while varying the blowing pressure and the stiffness of the clarinet reed. (In fact, the parameter varied on the y-axis is the effective stiffness per unit area of the reed, corresponding to the reed stiffness after it has been mounted on the mouthpiece and the musician’s lip is in contact with it). Black regions indicate ‘playable’ parameter combinations, whereas white regions indicate parameter combinations, where no sound is produced.

Figure 1: Pressure-stiffness playability map. The black regions correspond to parameter combinations that generate sound.

One possible observation is that, when players wish to play with a larger blowing pressure (resulting in louder sounds) they should use stiffer reeds. As indicated by the plot, for a reed of stiffness per area equal to 0.6 Pa/m (soft reed) it is not possible to generate a note with a blowing pressure above 2750 Pa. However, when using a harder reed (say with a stiffness of 1 Pa/m) one can play with larger blowing pressures, but it is impossible to play with a pressure lower than 3200 Pa in this case. Varying other types of control parameters could highlight similar effects regarding various instrument properties. For instance, playability maps subject to different mouthpiece geometries could be obtained, which would be valuable information for musicians and instrument makers alike.