Gil Averbuch –

Applied Ocean Phusics and Engineering, Woods Hole Oceanographic Instuitution.
Woods Hole, MA 02543
United States

Andi Petculescu
University of Louisiana
Department of Physics
Lafayette, Louisiana, USA

Popular version of 3aPAa6 – Calculating the Acoustics Internal Gravity Wave Dispersion Relations in Venus’s Supercritical Lower Atmosphere
Presented at the 186th ASA Meeting
Read the abstract at

–The research described in this Acoustics Lay Language Paper may not have yet been peer reviewed–

Venus surface. Image from NASA (

Venus is the second planet from the sun and is the closest in size and mass to Earth. Satellite images show large regions of tectonic deformations and volcanic material, indicating the area is seismically and volcanically active. Ideally, to study its subsurface and seismic and volcanic activity, we would deploy seismometers on the surface to measure the ground motions following venusquakes or volcanic eruptions; this will allow us to understand the planet’s past and current geological processes and evolution. However, the extreme conditions at the surface of Venus prevent us from doing that. With temperatures exceeding 400°C (854°F) and a pressure of more than 90 bars (90 times more than on Earth), instruments don’t last long.

One alternative to overcome this challenge is to study Venus’s subsurface and seismic activity using balloon-based acoustic sensors floating in the atmosphere to detect venusquakes from the air. But before doing that, we first need to assess its feasibility. This means we must better understand how seismic energy is transferred to acoustic energy in Venus’s atmosphere and how the acoustic waves propagate through it. In our research, we address the following questions. 1) How efficiently does seismic motion turn to atmospheric acoustic waves across Venus’ surface? 2) how do acoustic waves propagate in Venus’s atmosphere? and 3) what is the frequency range of acoustic waves in Venus’s atmosphere?

Venus’s extreme pressure and temperature correspond to supercritical fluid conditions in the atmosphere’s lowest few kilometers. Supercritical fluids combine gases and fluids’ properties and exhibit nonintuitive behavior, such as high density and compressibility. Therefore, to describe the behavior of such fluids, we need to use an equation of state (EoS) that captures these phenomena. Different EoSs are appropriate for different fluid conditions, but only a limited selection adequately describes supercritical fluids. One of these equations is the Peng-Robinson (PR) EoS. Incorporating the PR-EoS with the fluid dynamics equations allows us to study acoustics propagation in Venus’s atmosphere.

Our results show that the energy transported across Venus’s surface from seismic sources is two orders of magnitude larger than on Earth, pointing to a better seismic-to-acoustic transmission. This is mainly due to Venus’s denser atmosphere (~68 kg/m3) compared to Earth’s (~1 kg/m3). Using numerical simulations, we show that different seismic waves will be coupled to Venus’s atmosphere at different spatial positions. Therefore, when considering measurements from floating balloons, they will measure different seismic-to-acoustic signals depending on their position. In addition, we show that Venus’s atmosphere allows lower acoustic frequencies than Earth’s. This will be useful in 1) preparing the capabilities of the acoustic instruments used on the balloons, and 2) interpreting future observations.

Share This