Rob Hamilton – hamilr4@rpi.edu
Twitter: @robertkhamilton

Rensselaer Polytechnic Institute
110 8th St
Troy, New York 12180
United States

Popular version of 1aCA3 – Real-time musical performance across and within extended reality environments
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018060

Have you ever wanted to just wave your hands to be able to make beautiful music? Sad your epic air-guitar skills don’t translate into pop/rock super stardom? Given the speed and accessibility of modern computers, it may come as little surprise that artists and researchers have been looking to virtual and augmented reality to build the next generation of musical instruments. Borrowing heavily from video game design, a new generation of digital luthiers is already exploring new techniques to bring the joys and wonders of live musical performance into the 21st Century.

Image courtesy of Rob Hamilton.

One such instrument is ‘Coretet’: a virtual reality bowed string instrument that can be reshaped by the user into familiar forms such as a violin, viola, cello or double bass. While wearing a virtual reality headset such as Meta’s Oculus Quest 2, performers bow and pluck the instrument in familiar ways, albeit without any physical interaction with strings or wood. Sound is generated in Coretet using a computer model of a bowed or plucked string called a ‘physical model’ driven by the motion of a performer’s hands and the use of their VR game controllers. And borrowing from multiplayer online games, Coretet performers can join a shared network server and perform music together.

Our understanding of music, and live musical performance on traditional physical instruments is tightly coupled to time, specifically the understanding that when a finger plucks a string, or a stick strikes a drum head, a sound will be generated immediately, without any delay or latency. And while modern computers are capable of streaming large amounts of data at the speed of light – significantly faster than the speed of sound – bottlenecks in the CPUs or GPUs themselves, or in the code designed to mimic our physical interactions with instruments, or even in the network connections that connect users and computers alike, often introduce latency, making virtual performances feel sluggish or awkward.

This research focuses on some common causes for this kind of latency and looks at ways that musicians and instrument designers can work around or mitigate these latencies both technically and artistically.

Coretet overview video: Video courtesy of Rob Hamilton.

Share This