1aAAa2 – Flooring Impact Sound – A Potential Path to Quieter Hospitals

Mike Raley – mike.raley@ecoreintl.com
Ecore International
715 Fountain Avenue
Lancaster, PA 17601

Popular version of paper 1aAAa2
Presented Monday morning, December 7, 2020
179th ASA Meeting, Acoustics Virtually Everywhere

Hospitals are noisy places. The Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) surveys patients’ perception of their hospital care. Consistently, the quietness of the hospital is one of the lowest scores in the survey. If you have ever spent time in a hospital, that is likely no surprise.

What might be surprising is that a recent study by Bliefnick et al. showed that the acoustic metrics we typically use to evaluate noise in hospitals are not well-correlated with HCAHPS scores. Interestingly, they found that peak occurrence rates, how often a loud sound was above a certain threshold, were well-correlated with HCAHPS scores. In another recent study, Park et al. found that footsteps were a top five contributor to perceived loudness peaks, noise events that are significantly louder than the sound level before and after the event. Along with anecdotal evidence from healthcare designers, these two studies indicate that footsteps could contribute to a patient’s perception of quietness, and reducing noise from footsteps could improve that patient experience.

Test standard ASTM E3133 measures floor impact sound radiation in the space where the impact occurs. This differs from the common impact insulation class (IIC) standard (ASTM E492) that measures impact sound in the room below where the impacts occur.

(1aAAa2_Fig1_ImpactFoot.jpg)

Using ASTM E3133 we can compare floor impact sound levels for flooring common to hospitals, such as VCT and standard sheet vinyl, as well as specialty acoustical flooring like sheet vinyl fusion bonded to a rubber backing (Vinyl Rx).

(1aAAa1_Fig2_FlooringComparison)

Figure 2 shows that the Vinyl Rx can significantly reduce floor impact radiated sound, with a 13dB reduction in the overall sound level compared to VCT (a ~60% reduction in perceived loudness). The significant reduction in impact sound levels gives us an exciting indicator that specialty acoustical flooring has the potential to reduce predicted loudness peaks and improve the patient experience.

Unfortunately, there are some issues with the ASTM test method that limit its usefulness. In the course of testing to ASTM E3133, we uncovered substantial variation in the sound levels measured using two standard tapping machines from different manufacturers. The variation in tapping machines is evident even on a loud floor like concrete (see Figure 3).

(1aaAAa2_Fig3_BareConc)

The standard has provisions to account for the self-noise of the tapping machine, but those provisions do not correct the discrepancy between the two machines. Further investigation has shown that different flooring actually changes the self-noise of the tapping machine, so it cannot be easily accounted for.

While it may be possible to modify tapping machines to address the variation in self-noise, the most likely solution to the problem is a different impact source. Impact sources like golf balls, cue balls, and ball bearings can create consistent impacts without the self-noise issues of standard tapping machines. These objects are also readily available and easily transportable, so they lend themselves well to field measurements.

5aNSa4 – Preserving workers’ hearing health by improving earplug efficiency

Work carried out by researchers from ÉTS and the IRSST

Bastien Poissenot-Arrigoni – bastien.poissenot.1@ens.etsmtl.ca
Olivier Doutres –  olivier.doutres@etsmtl.ca
École de Technologie Supérieure
1100 Rue Notre-Dame Ouest,
Montréal, QC H3C 1K3

Franck Sgard – franck.sgard@irsst.qc.ca
Chun Hong Law – chunhonglaw@hotmail.com
505 Boulevard de Maisonneuve O.,
Montréal, QC H3A 3C2

Popular version of paper 5aNSa4 (Earcanal anthropometry analysis for the design of realistic artificial ears)
Presented Friday morning, December 11, 2020
179th ASA Meeting, Acoustics Virtually Everywhere

Noise exposure accounts for 22% of worldwide work-related health problems. Excessive noise not only causes hearing loss and tinnitus, but also increases the risk of cardiovascular diseases. To provide protection, workers normally wear earplugs. However, commonly available earplugs are often uncomfortable, since they don’t fit everyone’s ears equally well.

How could we improve the comfort and effectiveness of these earplugs? What aspects of the ear canal must be taken into account? To answer these questions, researchers from the École de technologie supérieure (ÉTS University) and the Institut de recherche en santé et sécurité du travail (IRSST) analyzed the varying structure of ear canals to find a correlation between their shapes and the effectiveness of three commonly-used models of earplugs.

Each one is unique
Just like fingerprints, ear canals are unique. So, to find the best compromise between comfort and efficiency, you need to understand the relationship between the shapes of ear canals and of earplugs.

Earplugs must not only fit properly inside the ear canal, but must also exert pressure against the walls of the canal in order to make a tight seal. However, if the plugs put too much pressure on the ear canal walls, they will cause the wearer pain.

The methodology
To study these aspects, 3D models of volunteer workers’ ear canals were created. These people wore three different types of earplugs.  To obtain the geometry of their ear canals, a moulding material was injected to create canal moulds. These moulds were then scanned by measurement software to establish the geometric characteristics of the ear canal, such as the width at various locations and the overall length.
F1_Earcanal_Modelisation.jpg
F2_Earplug_Attenuation_Measurement.jpg - earplug
The noise attenuation of the three models of earplugs was then measured for each volunteer. Two miniature microphones were installed in and around the plugs to measure the noise outside and inside the ear plug.A statistical analysis as well as algorithms based on artificial intelligence helped categorize the morphology of ear canals as a function of the degree of noise mitigation of each earplug.
 “F3_Ear_Anatomy.jpg”
Concrete applications
The results of the study show that the area of the ear canal called the “first bend” is closely linked to noise attenuation by earplugs. Groups of similar structures created using artificial intelligence will allow researchers to develop a multitude of tools for manufacturers, who will then be able to produce a range of more comfortable ear plugs. This will allow prevention professionals to suggest models suited to each worker’s ear canals.

3pBAb1 – Sonobiopsy uses ultrasound to diagnose brain cancer

Christopher Pacia – cpacia@wustl.edu
Lifei Zhu
Jinyun Yuan
Yimei Yue
Hong Chen – hongchen@wustl.edu

Washington University in St. Louis
4511 Forest Park Ave
St. Louis, MO 63108

Popular version of paper 3pBAb1
Presented Wednesday afternoon, December 9, 2020
179th ASA Meeting, Acoustics Virtually Everywhere

Brain cancer diagnosis starts with magnetic resonance imaging, or MRI, which allows clinicians to locate a tumor in the patient’s brain. However, MRI only provides anatomic information about the brain tumor. To understand the tumor type and to make a decision about future treatment, a neurosurgeon performs a tissue biopsy, drilling a small hole in the skull and carefully extracting a tumor sample with a long hollow needle. Liquid biopsy uses a blood sample to achieve similar information as the brain biopsy, without the need for surgery.

Unlike other cancers, whose small biomarkers, such as DNA, can be found circulating in a patient’s blood, brain cancers are separated from the rest of the body by the blood-brain barrier that does not allow tumor DNA to seep into the blood circulation. Two technologies are combined to briefly open the barrier: focused ultrasound and microbubbles. Focused ultrasound uses low-frequency ultrasonic energy to target tumors deep in the brain. Microbubbles are tiny gas bubbles commonly used in ultrasound imaging. When microbubbles are injected into a blood vessel, they travel along the blood flow to all parts of the patient’s body, including the brain. Once at the brain tumor, focused ultrasound causes the bubbles to expand and contract against the blood vessels in the brain, disrupting the blood-brain barrier and opening a door for the tumor DNA to be released into the blood circulation.

Video demonstrating the sonobiopsy technique to diagnose brain cancer.

The research presented here proves the success of sonobiopsy in increasing the levels of brain tumor biomarkers in the blood for the diagnosis of the most common and deadly brain tumor, glioblastoma, with different biomarker types and animal models. Sonobiopsy was optimized by increasing the amount of ultrasonic energy and the number of microbubbles injected to improve the number of biomarkers released in a mouse model. The utility of sonobiopsy was extended to different sized tumors and may be more effective for larger tumors, as demonstrated in a rat model. The potential for clinical translation was demonstrated by enhancing the release of brain-specific biomarkers in a pig model, with similar skull thickness as humans.

Sonobiopsy may be integrated into future clinical practice as a complement to MRI and tissue biopsies as an approach to noninvasively acquire molecular information of the tumor. The potential impact can be for the diagnosis of not only brain tumors but all other brain diseases. There are more studies to be done to better understand and optimize the technology before its practical value in humans, but this presentation is a step towards the future of brain cancer diagnosis.

3aAB2 – Assembling an acoustic catalogue for different dolphin species in the Colombian Pacific coast: an opportunity to parameterize whistles before rising noise pollution levels.

Daniel Noreña – d.norena@uniandes.edu.co
Kerri D. Seger
Susana Caballero

Laboratorio de Ecologia Molecular de Vertebrados Marinos
Universidad de los Andes
Bogotá, Colombia

Popular version of paper 3aAB2
Presented Wednesday morning, December 9 , 2020
179th ASA Meeting, Acoustics Virtually Everywhere

Growing ship traffic worldwide has led to a relatively recent increase in underwater noise, raising concerns about effects on marine mammal communication. Many populations of several dolphin species inhabit the eastern Pacific Ocean, particularly along the Chocó coast of Colombia. Recent research has confirmed that anthropologic noise pollution levels in this region are one of the lowest in any studied area around the globe, allowing an opportunity for scientists to listen and analyze a relatively undisturbed soundscape in our oceans.

Figure 1. Vessel traffic in the Americas (a) and in (b) Colombia in particular. Red indicates high traffic and blue areas have no traffic. Note the gap in traffic in the Colombian Pacific coast where the Gulf of Tribugá is located (inside black/red box) as compared to all other coastal regions.

Currently, the CPC is slated for the construction of a port in the Gulf of Tribugá, pending permits. Previous port construction projects in other countries have shown that this will change the acoustic environment and could compromise marine fauna, such as dolphin communication. This is the first study to document the whistle acoustic parameters from several dolphin species in the region before any disturbance. Opportunistic recordings were made in two different locations alongside the coast: Coquí, Chocó, and a few hundred kilometers north Bahía Solano, Chocó.

Figure 1. (a) The Colombian Pacific coast and (b) whale-watching locations and ports of the Pacific coast of Colombia. Ports are red markers and whale-watching spots are blue markers.

Five different delphinid species were recorded: Common bottlenose dolphin (Tursiops truncatus), Pantropical spotted dolphin (Stenella attenuata), Spinner dolphin (Stenella longirostris), False killer whale (Pseudorca crassidens) and Short- beaked common dolphin (Delphinus delphis). Comparing these recordings to those made from dolphin populations in more disturbed areas around the globe showed that the repertoires of four of the five species were different. These differences could be because the Chocó dolphins represent populations that use whistles with more natural features while the other, more disturbed, populations may have already changed their whistle features to avoid overlapping with boat traffic noise.

However, avoiding overlap with other conspecifics or other species in the same habitat is natural, too. This is called the acoustic niche hypothesis (ANH). The ANH states that geographically sympatric species should occupy specific frequency bands to avoid overlapping with each other. A Linear Discriminant Analysis (LDA) was done to explore whether the five different species have already adjusted their whistle features to avoid overlapping with other species. Frequency band separation is not the only feature of whistles that dolphins could adjust. The LDA used nine different features to observe if there is any natural division between any of the features.

dolphinFigure 2. LDA plot for nine whistle variables among the five species.

Tracking these whistle features in Chocó over time will help determine whether the different whistle features between the Chocó dolphins and dolphins from more disturbed areas are a result of the natural acoustic niche hypothesis or a result of noise pollution avoidance. If constructed, the port could force species to adjust their whistle features like populations from noisier habitats already have, and that could disrupt the acoustic niches that already exist, some of their whistles may still be interrupted by boat noise. Such disturbances could increase their stress levels or could lead to area abandonment, which would cause economic and ecological disasters for the region that relies on artisanal fishing and ecotourism.

3pAO1 – Can We Map the Entire Global Ocean Seafloor by 2030?

Larry Mayer – larry@ccom.unh.edu
Center for Coastal and Ocean Mapping
University of New Hampshire
Durham, N.H. 03824

Popular version of paper 3pAO1
Presented Wednesday afternoon, December 09, 2020
179th ASA Meeting, Acoustics Virtually Everywhere

Today it is trivial, with a few clicks of a mouse, to enter an application like Google Earth and explore the complexity of a range of earth processes with extraordinary detail.  While this is true for the brown and green parts of the Earth, it is not the case for the three-quarters of the earth that is blue – for the light waves that are used to image the land cannot penetrate far into ocean waters.  Thus while 100% of the land surface on the earth is mapped in remarkable detail, most of the ocean is unmapped and unexplored.  Knowing seabed depths, (bathymetry) is of vital importance for safety of navigation, predicting storm surge and tsunami inundation, mapping deep-sea habitats and ecosystems, laying cables and pipelines, exploring for resources, understanding ocean currents and their impact on climate change, national security issues and exploring human history as preserved in shipwrecks.

Given the inability of light to penetrate the oceans, for thousands of years, the only technique available to map the deep ocean was a hunk of lead at the end of a rope (lead line).  Unlike light, sound travels far distances in seawater and in the early 1900’s, the development of echo-sounders allowed for a much more rapid and accurate means of measuring ocean depths.  Initially echo-sounders used a single beam of sound that generated a broadly averaged measurement of depth, but in the late 1980s a new type of echo-sounder (multibeam echo-sounder) was developed that simultaneously provided hundreds of high-resolution measurements over a wide swath, revolutionizing our ability to map the seafloor.   By 2018 however, only 9% of the deep ocean seafloor had been mapped with multibeam echo-sounders.

Evolution of mapping systems from lead-line, to singlebeam sonar to multibeam sonar. Credit NOAA https://noaacoastsurvey.files.wordpress.com/2015/07/surveying.jpg

Best depiction of bathymetry offshore southern California from single beam echosounder data

Bathymetry of offshore southern California from multibeam echosounder.  Credit USGS.

Recognizing the poor state of knowledge of ocean depths and the critical role such knowledge plays in understanding and maintaining our planet, the Nippon Foundation challenged the mapping community to produce a complete map of the world ocean seafloor by 2030. The result, “The Nippon Foundation-GEBCO Seabed 2030 Project,” has already increased publicly-available holdings of modern deep-sea mapping data from 9% to 19% in the 2020.  Some of this initial increase came through discovery of existing data; the challenge now is to complete new mapping, an effort estimated to require approximately 200 ship-years (at a cost of $3-5B) using current technologies. While this seems like a large amount to spend on mapping our planet, the reality is that we have spent much more than this mapping other planets (i.e., Mars and the Moon) at much higher resolution. Why not our own planet?

Nippon Foundation – GEBCO Seabed 2030 Project

Meeting the challenge of complete mapping of the global ocean will require innovative new technologies that can increase efficiency, cost-effectiveness and, capabilities.  Autonomous vessels are being developed that can deliver high-resolution mapping systems without the significant cost of crews, and wind-powered autonomous systems, without the cost of crews or fuel.  Along with these new platform technologies innovative new acoustic approaches capable of providing wider swaths and higher resolution are also being developed.  As these new technologies evolve, the aspirational goal of Seabed 2030 may very well become a reality.

22 meter (72 foot) uncrewed Saildrone Surveyor – soon to be launched to autonomously sail the globe collecting deep-sea bathymetric (and other) data.