Wai Ming To – wmto@mpu.edu.mo
Macao Polytechnic University, R. de Luís Gonzaga Gomes, Macao, Macao, 00000, Macao
Andy Chung
Popular version of 3aNSb – Noise Dynamics in City Nightlife: Assessing Impact and Potential Solutions for Residential Proximity to Pubs and Bars
Presented at the 185 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0023229
Please keep in mind that the research described in this Lay Language Paper may not have yet been peer reviewed.
Picture a typical evening in the heart of a bustling city: pubs and bars come alive, echoing with laughter, music, and the clink of glasses. These hubs of social life create a vibrant tapestry of sounds. But what happens when this symphony overshadows the tranquility of those living just around the corner?
Image courtesy of Kvikoo, Singapore
Our journey begins in the lively interiors of these establishments. In countries rich in nightlife, you’ll find a high concentration of pubs and bars – sometimes up to 150 per 100,000 people. Inside a pub in Hong Kong, for instance, noise levels can soar to 80 decibels during peak hours, akin to the din of city traffic. Even during ‘happy hours,’ the decibel count hovers around 75, still significant.
But let’s step outside these walls. Here, the story takes a different turn. In residential areas adjacent to these nightspots, the evening air is often filled with an unintended soundtrack: the persistent hum of nightlife. In a study from Macedonia, for instance, residents experienced noise levels of about 67 decibels in the evening – a consistent background murmur disrupting the peace of homes.
This issue isn’t just about sound; it’s about the voices of those affected. Residents’ complaints about noise pollution have become a chorus in many parts of the world, including the United Kingdom, Hong Kong, and Australia. These complaints highlight a pressing question: How can we maintain the lively spirit of our cities while respecting the need for quiet?
Governments and communities are tuning into this challenge. Their responses, colored by cultural and historical factors, range from strict regulations to innovative solutions. For example, in Hong Kong, efforts to control noise at its source, as detailed in a government booklet, showcase one way of striking a balance.
This is a story of harmony – finding a middle ground where the joyous buzz of pubs and bars coexists with the serene rhythm of residential life. It’s about understanding that in the symphony of city life, every note, from the loudest cheer to the softest whisper, plays a crucial role.
Mylan Cook – mylan.cook@gmail.com
Brigham Young University, Provo, Utah, 84602, United States
Kent. L. Gee, Mark K. Transtrum, Shane V. Lympany
Popular version of 4aCA5 – Big data to streamlined app: Nationwide traffic noise prediction
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018816
VROOM! Vehicles are loud, and we hear them all the time. But how loud is it near your home, or at the park across town? The National Transportation Noise Map can’t give you more than an average daily sound level, even though it’s probably a lot quieter at night and louder during rush hour. So, we created an app that can predict the noise where, when, and how you want. How loud is it by that interstate at 3 AM, or at 5 PM? Using physics-based modeling, we can predict that for you. Why does the noise sound lower in pitch near the freeway than near other roads? Probably because of all the large trucks. How does the noise on your street during the winter compare to that across town, or on the other side of the country? Our app can predict that for you in a snap.
This (aptly named) app is called VROOM, for the Vehicular Reduced-Order Observation-based Model. It was made by using observed hourly traffic counts at stations across the country. It also uses information such as the average percentage of heavy trucks on freeways at night and the average number of delivery trucks on smaller roads on weekdays to predict sound characteristics across the nation. The app includes a user-friendly interface, and with only 700 MB of stored data can predict traffic noise for roads throughout the country, including near where you live. You don’t need a supercomputer to get a good estimate. The app will show you the sound levels by creating an interactive map so you can zoom in to see what the noise looks like downtown or near your home.
So how loud is traffic near you?
Olivia C Coiado – coiado@illinois.edu
Twitter: @oliviacoiado
Instagram: @oliviacoiado
Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, United States
Erasmo F. Vergara
Laboratory of Vibration and Acoustics, Department of Mechanical Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
Lizandra G. Lupi Vergara
Laboratory of Ergonomics, Department of Production and Systems Engineering, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
Popular version of 3pNS4-Noise Pollution in Hospitals and its Impacts on the Health Care Community and Patients, presented at the 183rd ASA Meeting.
If you ever had to be hospitalized in your life, you probably know that spending a night in a hospital room and getting some sleep is almost an impossible mission! Why? Noise in hospitals is a common problem for patients, families and teams of professionals and employees. Most of a hospital’s environment is affected by the sounds of equipment and machines with high sound pressure levels (SPL) or “noise”.
What can we do?
Fig 1: Sound pressure meter positioned in front of the reception desk in Brazil.
We used a sound pressure meter (Fig. 1) to record noise of medical equipment such as machines, medical devices, tools, alarms used in the medical activities in hospitals in Brazil and in the United States. SPLs inside hospitals may have high average values, higher than 60 decibels (dB), with peak SPL values of 100 dB and may not meet the international requirements. The World Health Organization (WHO) suggests that the average SPL in hospitals should be around 35 dB during the day and 30 dB at night. SPLs above 65 dB can cause behavioral disorders and affect the quality of sleep and cause changes in the physiological responses to stress in hospitalized patients. High noise levels exceeding 55 dB can affect both patients and staff. The noise effects can cause memory lapses and mental exhaustion in performing tasks, exposing technical and support teams to risks, accidents and errors in the performance of their work. For instance, a plane taking off (Fig. 2) can reach up to 100 dB and a noisy hospital environment can reach up to 70 dB, more than double of the noise recommended by the WHO!
Figure 2: Image adapted from Bayo, Garcia and Garcia 1989.
Our research considered both quantitative aspects, through numerical and qualitative descriptors (subjective and psychological assessment of patients, medical staff, employees, etc.), to assess noise pollution in hospitals. Our model analyzed the relationship between the acoustic characteristics of the environment and people’s sound perception.
We interviewed 47 people in a Brazilian Hospital, the responses were collected from nurses, nursing assistants, doctors, and other staff members. 60% of the participants responded that they needed to speak louder and felt discomfort with the noise in the work environment, 57% said they felt discomfort with the noise coming from the medical equipment, 72% of the participants said the work environment is moderately or very noisy. The next phase of our research is to repeat the same measurements in a United Stated Hospital and compare the results. Then we can make a reflection, what can we do to reduce the effects of noise pollution in hospitals? How to reduce the noise coming from medical equipment? Our “dream” is to provide a more comfortable environment for patients and the health community. Hoping they can finally get a good night of sleep in Brazil in the U.S or any other hospital in the world.