IYS Press Releases

Upcoming U.S. IYS / ASA Events in 2020

Upcoming U.S. IYS / ASA Events in 2020

13 February, 2020: US Opening Ceremony
The ASA Washington DC Regional Chapter will be hosting the US International Year of Sound Opening Ceremony on Thursday, February 13th, 6pm – 9pm in the American Center for Physics (One Physics Ellipse, College Park, MD 20740).

World Hearing Day — 3 March 2020

International Noise Awareness Day — Wednesday, 29 April 2020 

9–10 May 2020: ASA School 2020
ASA School 2020 is a two-day course for graduate students and early career acousticians being held in Itasca, Illinois. Visit https://acousticalsociety.org/asa-school-2020/ for application information.

11–15 May 2020: ASA Spring meeting
The 179th Meeting of the Acoustical Society of America will be held in Chicago, Illinois, USA.

Jam Session in Chicago
The College of Fellows will host the ASA Jam Session on Wednesday, 13 May, at 8:00 p.m. Bring your axe, horn, sticks, voice, or anything else that makes music. Musicians and non-musicians are all welcome to attend. A full PA system, backline equipment, guitars, bass, keyboard, and drum set will be provided. All attendees will enjoy live music, a cash bar, and all-around good times. Don’t miss out.

Listen Up and Get Involved!

Monday, 11 May, 1:00 p.m. to 6:00 p.m.: Technical Tour to Riverbank Laboratories
Participants are asked to make a $10 donation to the Acoustical Society of America Early Career Leadership Campaign (CAECL) when they register for the meeting. Click here for more details.

11–15 May 2020: Gallery of Acoustics
The Gallery will consist of a collection of images, videos, audio clips, and narrations of images and/or sounds generated by acoustic processes or resulting from signal and image processing of acoustic data. Visit the ASA meeting website for submission guidelines: acousticalsociety.org/asa-meetings

11–15 May 2020: Hands-on Workshop: Wiki4YearOfSound2020
During the 179th Meeting of the Acoustical Society of America. Workshop attendees will learn the basics of Wikipedia editing, make substantive changes to Wikipedia articles within their area of expertise, and find out more about the Wiki Education Foundation’s classroom program.

11–15 May 2020: Without the Past, There is no Present or Future – The Story of Historical Instruments. A display of historical instruments and photographs will be on display at the 179th ASA Spring meeting.

11–15 May 2020: Biomedical Acoustics Workshop: Time-domain ultrasound simulation in biological tissue using k-Wave
There is no fee to participate, however, participants must register online or use the printed registration form at the time of registering for 179th Meeting of the Acoustical Society of America. See full details here.

PASS 2020

9 – 13 November 2020: ASA Fall meeting
The 180th Meeting of the Acoustical Society of America will be held in Cancun, Mexico.

Does Living Near Wind Turbines Negatively Impact Human Health?

Ultrasonic Production of Skimmed Milk

Ultrasonic Production of Skimmed Milk

Australian researchers are the first to demonstrate milk fat separation at large-scales using an ultrasonic separation technique, with potential industrial dairy applications

WASHINGTON, D.C., May 20, 2015 — Recently, scientists from Swinburne University of Technology in Australia and the Commonwealth Scientific and Industrial Research Organization (CSIRO), have jointly demonstrated cream separation from natural whole milk at liter-scales for the first time using ultrasonic standing waves–a novel, fast and nondestructive separation technique typically used only in small-scale settings.

At the 169th Meeting of the Acoustical Society of America (ASA), being held May 18-22 2015 in Pittsburgh, Pennsylvania, the researchers will report the key design and effective operating parameters for milk fat separation in batch and continuous systems.

The project, co-funded by the Geoffrey-Gardiner Dairy Foundation and the Australian Research Council, has established a proven ultrasound technique to separate fat globules from milk with high volume throughputs up to 30 liters per hour, opening doors for processing dairy and biomedical particulates on an industrial scale.

“We have successfully established operating conditions and design limitations for the separation of fat from natural whole milk in an ultrasonic liter-scale system,” said Thomas Leong, an ultrasound engineer and a postdoctoral researcher from the Faculty of Science, Engineering and Technology at the Swinburne University of Technology. “By tuning system parameters according to acoustic fundamentals, the technique can be used to specifically select milk fat globules of different sizes in the collected fractions, achieving fractionation outcomes desired for a particular dairy product.”

The Ultrasonic Separation Technique
According to Leong, when a sound wave is reflected upon itself, the reflected wave can superimpose over the original waves to form an acoustic standing wave. Such waves are characterised by regions of minimum local pressure, where destructive interference occurs at pressure nodes, and regions of high local pressure, where constructive superimposition occurs at pressure antinodes.

When an acoustic standing wave field is sustained in a liquid containing particles, the wave will interact with particles and produce what is known as the primary acoustic radiation force. This force acts on the particles, causing them to move towards either the node or antinode of the standing wave, depending on their density. Positioned thus, the individual particles will then rapidly aggregate into larger entities at the nodes or antinodes.

To date, ultrasonic separation has been mostly applied to small-scale settings, such as microfluidic devices for biomedical applications. Few demonstrations are on volume-scale relevant to industrial application, due to the attenuation of acoustic radiation forces over large distances.

Acoustic Separation of Milk Fat Globules at Liter Scales
To remedy this, Leong and his colleagues have designed a system consisting of two fully-submersible plate transducers placed on either end of a length-tunable, rectangular reaction vessel that can hold up to two liters of milk.

For single-plate operation, one of the plates produces one or two-megahertz ultrasound waves, while the other plate acts as a reflector. For dual-plate operation, both plates were switched on simultaneously, providing greater power to the system and increasing the acoustic radiation forces sustained.

To establish the optimal operation conditions, the researchers tested various design parameters such as power input level, process time, transducer-reflector distance and single or dual transducer set-ups etc.

They found that ultrasound separation makes the top streams of the milk contain a greater concentration of large fat globules (cream), and the bottom streams more small fat globules (skimmed milk), compared to conventional methods.

“These streams can be further fractionated to obtain smaller and larger sized fat globules, which can be used to produce novel dairy products with enhanced properties,” Leong said, as dairy studies suggested that cheeses made from milk with higher portion of small fat globules have superior taste and texture, while milk or cream with more large fat globules can lead to tastier butter.

Leong said the ultrasonic separation process only takes about 10 to 20 minutes on a liter scale – much faster than traditional methods of natural fat sedimentation and buoyancy processing, commonly used today for the manufacture of Parmesan cheeses in Northern Italy, which can take more than six hours.

The researchers’ next step is to work with small cheese makers to demonstrate the efficacy of the technique in cheese production.​

———————– MORE MEETING INFORMATION ———————–
USEFUL LINKS
Main meeting website: https://acousticalsociety.org/asa-meetings/
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM
In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at https://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at media@aip.org. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

“Natural” Sounds Improves Mood and Productivity, Study Finds

“Natural” Sounds Improves Mood and Productivity, Study Finds

Work presented at the 169th Acoustical Society of America (ASA) Meeting in Pittsburgh may have benefits from the office cube to the in-patient ward

WASHINGTON, D.C., May 19, 2015 — Playing natural sounds such as flowing water in offices could boosts worker moods and improve cognitive abilities in addition to providing speech privacy, according to a new study from researchers at Rensselaer Polytechnic Institute. They will present the results of their experiment at the 169th Meeting of the Acoustical Society of America in Pittsburgh.

An increasing number of modern open-plan offices employ sound masking systems that raise the background sound of a room so that speech is rendered unintelligible beyond a certain distance and distractions are less annoying.

“If you’re close to someone, you can understand them. But once you move farther away, their speech is obscured by the masking signal,” said Jonas Braasch, an acoustician and musicologist at the Rensselaer Polytechnic Institute in New York.

Sound masking systems are custom designed for each office space by consultants and are typically installed as speaker arrays discretely tucked away in the ceiling. For the past 40 years, the standard masking signal employed is random, steady-state electronic noise — also known as “white noise.”

Braasch and his team had previously tested whether masking signals inspired by natural sounds might work just as well, or better, than the conventional signal. The idea was inspired by previous work by Braasch and his graduate student Mikhail Volf, which showed that people’s ability to regain focus improved when they were exposed to natural sounds versus silence or machine-based sounds.

Recently, Braasch and his graduate student Alana DeLoach built upon those results in a new experiment. They exposed [HOW MANY??] human participants to three different sound stimuli while performing a task that required them to pay close attention: typical office noises with the conventional random electronic signal; an office soundscape with a “natural” masker; and an office soundscape with no masker. The test subjects only encountered one of the three stimuli per visit.

The natural sound used in the experiment was designed to mimic the sound of flowing water in a mountain stream. “The mountain stream sound possessed enough randomness that it did not become a distraction,” DeLoach said. “This is a key attribute of a successful masking signal.”

They found that workers who listened to natural sounds were more productive than the workers exposed to the other sounds and reported being in better moods.

Braasch said using natural sounds as a masking signal could have benefits beyond the office environment. “You could use it to improve the moods of hospital patients who are stuck in their rooms for days or weeks on end,” Braasch said.

For those who might be wary of employers using sounds to influence their moods, Braasch argued that using natural masking sounds is no different from a company that wants to construct a new building near the coast so that its workers can be exposed to the soothing influence of ocean surf.

“Everyone would say that’s a great employer,” Braasch said. “We’re just using sonic means to achieve that same effect.”

———————– MORE MEETING INFORMATION ———————–
USEFUL LINKS
Main meeting website: https://acousticalsociety.org/asa-meetings/
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM
In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at https://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at media@aip.org. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.

Robotic Sonar System Inspired by Bats

Robotic Sonar System Inspired by Bats

Team at Virginia Tech hopes to create small, efficient sonar systems that use less power than current arrays

WASHINGTON, D.C., May 20, 2015 — Engineers at Virginia Tech have taken the first steps toward building a novel dynamic sonar system inspired by horseshoe bats that could be more efficient and take up less space than current man-made sonar arrays. They are presenting a prototype of their “dynamic biomimetic sonar” at the 169th Meeting of the Acoustical Society of America in Pittsburg, Penn.

Bats use biological sonar, called echolocation, to navigate and hunt, and horseshoe bats are especially skilled at using sounds to sense their environment. “Not all bats are equal when it comes to biosonar,” said Rolf Müller, a mechanical engineer at Virginia Tech. “Horseshoe bats hunt in very dense forests, and they are able to navigate and capture prey without bumping into anything. In general, they are able to cope with difficult sonar sensing environments much better than we currently can.”

To uncover the secrets behind the animal’s abilities, Müller and his team studied the ears and noses of bats in the laboratory. Using the same motion-capture technology used in Hollywood films, the team revealed that the bats rapidly deform their outer ear shapes to filter sounds according to frequency and direction and to suit different sensing tasks.

“They can switch between different ear configurations in only a tenth of a second – three times faster than a person can blink their eyes,” said Philip Caspers, a graduate student in Müller’s lab.

Unlike bat species that employ a less sophisticated sonar system, horseshoe bats emit ultrasound squeaks through their noses rather than their mouths. Using laser-Doppler measurements that detect velocity, the team showed that the noses of horseshoe bats also deform during echolocation–much like a megaphone whose walls are moving as the sound comes out.

The team has now applied the insights they’ve gathered about horseshoe bat echolocation to develop a robotic sonar system. The team’s sonar system incorporates two receiving channels and one emitting channel that are able to replicate some of the key motions in the bat’s ears and nose. For comparison, modern naval sonar arrays can have receivers that measure several meters across and many hundreds of separate receiving elements for detecting incoming signals.

By reducing the number of elements in their prototype, the team hopes to create small, efficient sonar systems that use less power and computing resources than current arrays. “Instead of getting one huge signal and letting a supercomputer churn away at it, we want to focus on getting the right signal,” Müller said.

———————– MORE MEETING INFORMATION ———————–
USEFUL LINKS
Main meeting website: https://acousticalsociety.org/asa-meetings/
Press Room: https://acoustics.org/world-wide-press-room/

WORLDWIDE PRESS ROOM
In the coming weeks, ASA’s Worldwide Press Room will be updated with additional tips on dozens of newsworthy stories and with lay language papers, which are 300 to 500 word summaries of presentations written by scientists for a general audience and accompanied by photos, audio and video. You can visit the site during the meeting at https://acoustics.org/world-wide-press-room/.

PRESS REGISTRATION
We will grant free registration to credentialed journalists and professional freelance journalists. If you are a reporter and would like to attend, contact AIP Media Services at media@aip.org. For urgent requests, staff at media@aip.org can also help with setting up interviews and obtaining images, sound clips, or background information.

ABOUT THE ACOUSTICAL SOCIETY OF AMERICA
The Acoustical Society of America (ASA) is the premier international scientific society in acoustics devoted to the science and technology of sound. Its 7,000 members worldwide represent a broad spectrum of the study of acoustics. ASA publications include The Journal of the Acoustical Society of America (the world’s leading journal on acoustics), JASA Express Letters, Proceedings of Meetings on Acoustics, Acoustics Today magazine, books, and standards on acoustics. The society also holds two major scientific meetings each year. See https://acousticalsociety.org/.