Semiha Yilmazer – semiha@bilkent.edu.tr
Department of Interior Architecture and Environmental Design, Bilkent University, Ankara, Turkey, 06800, Turkey
Ela Fasllija, Enkela Alimadhi, Zekiye Şahin, Elif Mercan, Donya Dalirnaghadeh
Popular version of 5aPP9 – A Corpus-based Approach to Define Turkish Soundscape Attributes
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0019179
We hear sound wherever we are, on buses, in streets, in cafeterias, museums, universities, halls, churches, mosques, and so forth. How we describe sound environments (soundscapes) changes according to the different experiences we have throughout our lives. Based on this, we wonder how people delineate sound environments and, thus how they perceive them.
There are reasons to believe there may be variances in how soundscape affective attributes are called in a Turkish context. Considering the historical and cultural differences countries have, we thought that it would be important to assess the sound environment by asking individuals of different ages all over Turkey. For our aim, we used the Corpus-driven approach (CDA), an approach found in Cognitive Linguistics. This allowed us to collect data from laypersons to effectively identify soundscapes based on adjective usage.
In this study, the aim is to discover linguistically and culturally appropriate equivalents of Turkish soundscape attributes. The study involved two phases. In the first phase, an online questionnaire was distributed to native Turkish speakers proficient in English, seeking adjective descriptions of their auditory environment and English-to-Turkish translations. This CDA phase yielded 79 adjectives.
Figure 1 Example public spaces; a library and a restaurant
Examples: audio 1, audio 2
In the second phase, a semantic-scale questionnaire was used to evaluate recordings of different acoustic environments in public spaces. The set of environments comprised seven distinct types of public spaces, including cafes, restaurants, concert halls, masjids, libraries, study areas, and design studios. These recordings were collected at various times of the day to ensure they also contained different crowdedness and specific features. A total of 24 audio recordings were evaluated for validity; each listened to 10 times by different participants. In total, 240 audio clips were randomly assessed, with participants rating 79 adjectives per recording on a five-point Likert scale.
Figure 2 The research process and results
The results of the study were analyzed using a principal component analysis (PCA), which showed that there are two main components of soundscape attributes: Pleasantness and Eventfulness. The components were organized in a two-dimensional model, where each is associated with a main orthogonal axis such as annoying-comfortable and dynamic-uneventful. This circular organization of soundscape attributes is supported by two additional axes, namely chaotic-calm and monotonous-enjoyable. It was also observed that in the Turkish circumplex, the Pleasantness axis was formed by adjectives derived from verbs in a causative form, explaining the emotion the space causes the user to feel. It was discovered that Turkish has a different lexical composition of words compared to many other languages, where several suffixes are added to the root term to impose different meanings. For instance, the translation of tranquilizer in Turkish is sakin-leş (reciprocal suffix) -tir (causative suffix)- ici (adjective suffix).
The study demonstrates how cultural differences impact sound perception and language’s role in expression. Its method extends beyond soundscape research and may benefit other translation projects. Further investigations could probe parallel cultures and undertake cross-cultural analyses.
Karen Gordon – karen.gordon@utoronto.ca
Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children, University of Toronto, The Hospital for Sick Children, TORONTO, ON, M5G1X8, Canada
Additional Authors – Anderson, C., Jiwani, S., Polonenko, M., Wong, D.D.E., Cushing, S.L., Papsin, B.C.
Additional Links
SickKids: https://lab.research.sickkids.ca/archies-cochlear-implant/
Hear Here Podcast: https://linktr.ee/hearherepodcast
Popular version of 3aPP5 – Non-auditory processing of cochlear implant stimulation after unilateral auditory deprivation in children
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018669/
Decades of research have shown that hearing from only one ear in childhood should not be dismissed as a “minimal” hearing problem as it can impair language, cognitive, and academic development. We have been exploring whether there are effects of unilateral hearing on the developing brain. A series of studies has been done in children who have one deaf ear and who hear from the other side through a normal or typically hearing ear, a hearing aid, or a cochlear implant. We record electrical fields of brain activity from electrodes placed on the surface of the head (encephalography); we then calculate what parts of the brain are responding.
The findings show that auditory pathways from the hearing ear to the auditory cortices are strengthened in children with long term unilateral hearing. In other words, the hearing brain has developed a preference for the hearing ear. As shown in Figure 1, responses from the better hearing ear were also from areas of the brain involving attention and other sensory processing. This means that areas beyond the auditory parts of the brain are involved in hearing from the better ear.
Figure 1 legend: Cortical areas abnormally active from the experienced ear in children with long periods of unilateral cochlear implant use include left frontal cortex and precuneus.Adapted from Jiwani S, Papsin BC, Gordon KA. Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf. Hum Brain Mapp. 2016 Jan;37(1):135-52. doi: 10.1002/hbm.23019. Epub 2015 Oct 12. PMID: 26456629; PMCID: PMC6867517.
We also asked whether there were brain changes from the ear deprived of sound in children. This question was addressed by measuring cortical responses in three cohorts of children with unilateral hearing who received a cochlear implant in their deaf ear (single sided deafness, bilateral hearing aid users with asymmetric hearing loss, and unilateral cochlear implant users). Many of these children showed atypical responses from the cochlear implant with unusually strong responses from the brain on the same side of the deaf implanted ear. As shown in Figure 2, this unusual response was most clear in children who had not heard from that ear for several years (Figure 2A) and was already present during the first year of bilateral implant use (Figure 2B).
Figure 2 legend: Cortical responses evoked by the second cochlear implant (CI-2) in children receiving bilateral devices. A) Whereas expected contralateral lateralization of activity is evoked in children with short periods of unilateral deprivation/short delays to bilateral implantation, abnormal ipsilateral responses are found in children with long periods of unilateral deprivation despite several years of bilateral CI use. Adapted from: Gordon KA, Wong DD, Papsin BC. Bilateral input protects the cortex from unilaterally-driven reorganization in children who are deaf. Brain. 2013 May;136(Pt 5):1609-25. doi: 10.1093/brain/awt052. Epub 2013 Apr 9. PMID: 23576127. B) Abnormal ipsilateral responses are also found throughout the first year of bilateral CI use in children with long periods of unilateral deprivation/long delays to bilateral CI. Adapted from Anderson CA, Cushing SL, Papsin BC, Gordon KA. Cortical imbalance following delayed restoration of bilateral hearing in deaf adolescents. Hum Brain Mapp. 2022 Aug 15;43(12):3662-3679. doi: 10.1002/hbm.25875. Epub 2022 Apr 15. PMID: 35429083; PMCID: PMC9294307
New analyses have shown that this this response from the CI in the longer deaf ear includes areas of the brain involved in attention, language, and vision.
Results across these studies demonstrate brain changes that occur in children with unilateral hearing/deprivation. Some of these changes happen in the auditory system but others involve other brain areas and suggest that multiple parts of the brain are working when children listen with their cochlear implants.
Daniel Fink – djfink01@aol.com
Twitter: @QuietCoalition
Board Chair, The Quiet Coalition, 60 Thoreau Street, Concord, MA, 01742, United States
The Quiet Coalition is a program of Quiet Communities, Inc., Lincoln, MA, USA
Popular version of 4aNS8-The Federal Aviation Administration (FAA) allows Americans to be exposed to unsafe levels of aviation noise
Presented at the 183rd ASA Meeting
The American Public Health Association states, “Noise is unwanted and/or harmful sound.” Noise not loud enough to damage hearing causes high blood pressure, heart attacks, and strokes. The Federal Aviation Administration (FAA) considers noise an annoyance but does not acknowledge the adverse health effects of aircraft noise. Based on the Schultz curve, the FAA adopted 65 dBA Day-Night Level (DNL) as “the threshold for significant aviation noise, below which residential land use is compatible.” The FAA’s recent Neighborhood Environmental Survey found that many more Americans are annoyed by noise than previously known.
Schultz Curve and Neighborhood Environmental Survey results, showing that many more Americans are annoyed by noise than the Schultz Curve showed. Source: FAA
[I have to tell you a little about the science of sound or noise measurement. The words sound and noise are used interchangeably. Sound is measured in decibels (dB). The decibel scale is logarithmic. This means that a 10 dB increase from 50 to 60 dB indicates 10 times more sound energy, not merely 20% more. Because noise disrupts sleep, DNL measures noise for 24 hours but adds a 10 dB penalty for noise between 10 p.m. and 7 a.m. A-weighting (dBA) adjusts sound measurements for the frequencies heard in human speech. A-weighting is not the right measure for aircraft noise because aircraft noise has lower frequencies than speech. A-weighting also reduces unweighted sound measurements by about 20-30 dB.]
According to the Environmental Protection Agency (EPA), though, safe noise levels are only 45 dB DNL for indoor noise and 55 dB DNL for outdoor noise. The World Health Organization (WHO) recommends lower aircraft noise levels: 45 dB Day-Evening-Night Level (adding a 5 dB penalty for noise between 7-10 p.m.) and 40 dB at night. Both EPA safe noise levels and WHO recommended aircraft noise levels are obviously much lower than the FAA’s 65 dBA DNL, especially because they use unweighted dB.
Being annoyed or disturbed by aircraft noise is stressful. Stress increases heart rate and blood pressure. Stress increases blood levels of stress hormones. Stress causes inflammation of the blood vessel lining. in turn causing cardiovascular disease, including hypertension and heart attacks, and other adverse health effects. Scientific experts think that the evidence is strong enough to establish causality, not merely a statistical association. Epidemiological studies demonstrating these effects have been confirmed by human and animal research. The biological mechanisms are now understood at the cellular, subcellular, molecular, and genetic levels. Aircraft noise also affects poor and minority communities more than others. Children are also more sensitive to damage from noise, which also interferes with learning.
The FAA insists that more research is needed, but no more research is needed to know that aviation noise is hazardous to health. The FAA must establish lower noise standards to protect Americans exposed to aircraft noise.