Turning Up Ocean Temperature & Volume – Underwater Soundscapes in a Changing Climate

Freeman Lauren – lauren.a.freeman3.civ@us.navy.mil

Instagram: @laur.freeman

NUWC Division Newport, NAVSEA, Newport, RI, 02841, United States

Dr. Lauren A. Freeman, Dr. Daniel Duane, Dr. Ian Rooney from NUWC Division Newport and
Dr. Simon E. Freeman from ARPA-E

Popular version of 1aAB1 – Passive Acoustic Monitoring of Biological Soundscapes in a Changing Climate
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018023

Climate change is impacting our oceans and marine ecosystems across the globe. Passive acoustic monitoring of marine ecosystems has been shown to provide a window into the heartbeat of an ecosystem, its relative health, and even information such as how many whales or fish are present in a given day or month. By studying marine soundscapes, we collate all of the ambient noise at an underwater location and attribute parts of the soundscape to wind and waves, to boats, and to different types of biology. Long term biological soundscape studies allow us to track changes in ecosystems with a single, small, instrument called a hydrophone. I’ve been studying coral reef soundscapes for nearly a decade now, and am starting to have time series long enough to begin to see how climate change affects soundscapes. Some of the most immediate and pronounced impacts of climate change on shallow ocean soundscapes are evident in varying levels of ambient biological sound. We found a ubiquitous trend at research sites in both the tropical Pacific (Hawaii) and sub-tropical Atlantic (Bermuda) that warmer water tends to be associated with higher ambient noise levels. Different frequency bands provide information about different ecological processes (such as fish calls, invertebrate activity, and algal photosynthesis). The response of each of these processes to temperature changes is not uniform, however each type of ambient noise increases in warmer water. At some point, ocean warming and acidification will fundamentally change the ecological structure of a shallow water environment. This would also be reflected in a fundamentally different soundscape, as described by peak frequencies and sound intensity. While I have not monitored the phase shift of an ecosystem at a single site, I have documented and shown that healthy coral reefs with high levels of parrotfish and reef fish have fundamentally different soundscapes, as reflected in their acoustic signature at different frequency bands, than coral reefs that are degraded and overgrown with fleshy macroalgae. This suggests that long term soundscape monitoring could also track these ecological phase shifts under climate stress and other impacts to marine ecosystems such as overfishing.

A healthy coral reef research site in Hawaii with vibrant corals, many reef fish, and copious nooks and crannies for marine invertebrates to make their homes.
Soundscape segmented into three frequency bands capturing fish vocalizations (blue), parrotfish scrapes (red), and invertebrate clicks along with algal photosynthesis bubbles (yellow). All features show an increase in ambient noise level (PSD, y-axis) with increasing ocean temperature at each site studied in Hawaii.

There is a way to differently define the acoustic environment

Semiha Yilmazer – semiha@bilkent.edu.tr

Department of Interior Architecture and Environmental Design, Bilkent University, Ankara, Turkey, 06800, Turkey

Ela Fasllija, Enkela Alimadhi, Zekiye Şahin, Elif Mercan, Donya Dalirnaghadeh

Popular version of 5aPP9 – A Corpus-based Approach to Define Turkish Soundscape Attributes
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0019179

We hear sound wherever we are, on buses, in streets, in cafeterias, museums, universities, halls, churches, mosques, and so forth. How we describe sound environments (soundscapes) changes according to the different experiences we have throughout our lives. Based on this, we wonder how people delineate sound environments and, thus how they perceive them.

There are reasons to believe there may be variances in how soundscape affective attributes are called in a Turkish context. Considering the historical and cultural differences countries have, we thought that it would be important to assess the sound environment by asking individuals of different ages all over Turkey. For our aim, we used the Corpus-driven approach (CDA), an approach found in Cognitive Linguistics. This allowed us to collect data from laypersons to effectively identify soundscapes based on adjective usage.

In this study, the aim is to discover linguistically and culturally appropriate equivalents of Turkish soundscape attributes. The study involved two phases. In the first phase, an online questionnaire was distributed to native Turkish speakers proficient in English, seeking adjective descriptions of their auditory environment and English-to-Turkish translations. This CDA phase yielded 79 adjectives.


Figure 1 Example public spaces; a library and a restaurant

Examples: audio 1, audio 2

In the second phase, a semantic-scale questionnaire was used to evaluate recordings of different acoustic environments in public spaces. The set of environments comprised seven distinct types of public spaces, including cafes, restaurants, concert halls, masjids, libraries, study areas, and design studios. These recordings were collected at various times of the day to ensure they also contained different crowdedness and specific features. A total of 24 audio recordings were evaluated for validity; each listened to 10 times by different participants. In total, 240 audio clips were randomly assessed, with participants rating 79 adjectives per recording on a five-point Likert scale.


Figure 2 The research process and results

The results of the study were analyzed using a principal component analysis (PCA), which showed that there are two main components of soundscape attributes: Pleasantness and Eventfulness. The components were organized in a two-dimensional model, where each is associated with a main orthogonal axis such as annoying-comfortable and dynamic-uneventful. This circular organization of soundscape attributes is supported by two additional axes, namely chaotic-calm and monotonous-enjoyable. It was also observed that in the Turkish circumplex, the Pleasantness axis was formed by adjectives derived from verbs in a causative form, explaining the emotion the space causes the user to feel. It was discovered that Turkish has a different lexical composition of words compared to many other languages, where several suffixes are added to the root term to impose different meanings. For instance, the translation of tranquilizer in Turkish is sakin-leş (reciprocal suffix) -tir (causative suffix)- ici (adjective suffix).

The study demonstrates how cultural differences impact sound perception and language’s role in expression. Its method extends beyond soundscape research and may benefit other translation projects. Further investigations could probe parallel cultures and undertake cross-cultural analyses.

Fish & Shrimp & Seals, Oh My! Soundscapes of Hawaiian monk seal habitats are dominated by biophony

Kirby Parnell – keparnel@hawaii.edu
@kirB15
@kirbyparnell15

Marine Mammal Research Program, University of Hawaii Manoa, Kaneohe, HI, 96744, United States

Karlina Merkens
Aude Pacini – twitter: @audepacini
Lars Bejder – twitter: @lbejder, @MMRP_UH

Popular version of 5aUW-Underwater soundscapes at critical habitats of the endangered Hawaiian monk seal, presented at the 183rd ASA Meeting.

The ocean is a noisy place. From chatty marine mammals to territorial fish and hungry shrimp, marine animals use sound to communicate, navigate, defend territories, and find food, mates, and safe spaces to settle down. However, human activities are negatively impacting the abilities of marine animals to effectively use sound for critical life functions. For the endangered Hawaiian monk seal with a population size of approximately 1,570 seals, we’re finding that vocal communication (Audio File 1) may play an important role for reproduction, yet we lack a foundational knowledge of the seals’ acoustic environment, better known as a soundscape. In this study, we found that biological sounds produced by snapping shrimp, fish, and seals dominate and shape the underwater soundscapes at critical habitats of the Hawaiian monk seal, with little input from man-made sources (Figure 1).

Figure 1 | A) Spectrogram of a 24-hour period on 11 May 2021 at Lehua Rock. A spectrogram is a visual representation of a sound where the x-axis is time, the y-axis is frequency (or pitch), and the color represents the amplitude of the sound (how loud or soft the sound is). The black icons indicate the source of the sound: snapping shrimp, boat, scuba divers, humpback whale song, Hawaiian monk seal vocalizations, and the vertical migration of the deep scattering layer. B) Spectrogram showing overlapping Hawaiian monk seal vocalizations from 0-1 kHz and humpback whale song from 0.5-5 kHz (listen to this in Audio File.

Figure 1 | A) Spectrogram of a 24-hour period on 11 May 2021 at Lehua Rock. A spectrogram is a visual representation of a sound where the x-axis is time, the y-axis is frequency (or pitch), and the color represents the amplitude of the sound (how loud or soft the sound is). The black icons indicate the source of the sound: snapping shrimp, boat, scuba divers, humpback whale song, Hawaiian monk seal vocalizations, and the vertical migration of the deep scattering layer. B) Spectrogram showing overlapping Hawaiian monk seal vocalizations from 0-1 kHz and humpback whale song from 0.5-5 kHz (listen to this in Audio File 1).

We sought to describe the underwater soundscape, or the acoustic environment, at locations that Hawaiian monk seals utilize for foraging, breeding, communication, and other critical life functions. We wanted to know 1) how loud are ambient (background) sound levels, 2) are sound sources biological, geophysical, or manmade, 3) how do sound sources and levels change throughout the day, and 4) how does the soundscape compare between the more-densely human-populated main Hawaiian Islands and the remote Northwestern Hawaiian Islands. To do this, we deployed passive acoustic recorders, known as SoundTraps, at four critical habitats of the Hawaiian monk seal: Rabbit Island, Oahu; Lehua Rock, Niʻihau; French Frigate Shoals; and Pearl and Hermes Reef. The SoundTraps recorded sounds from 20 Hz up to 24 kHz – this includes low-frequency sounds like earthquakes to high-frequency sounds like dolphin echolocation.

Our results indicate that sound levels are generally loud at these nearshore reef environments thanks to the persistent crackling sounds of snapping shrimp, low-frequency vocalizations of monk seals, and a variety of fish sounds. With little input from manmade sound sources, except at the popular scuba diving site Lehua Rock, we suspect that the elevated sound levels are indicative of healthy reef environments. This is good news for Hawaiian monk seals – less manmade noise means less acoustic masking making it easier to hear and “speak” to each other under water. We also opportunistically recorded sounds from Hurricane Douglas (Category 4) and a 6.2 magnitude earthquake around the time Kilauea began erupting. Overall, this study provides the first description of underwater soundscapes at Hawaiian monk seal critical habitats. These measurements can serve as a baseline for future studies to understand the impact of human activity on underwater soundscapes.

4pNS2 – Sound of the City: Creating a Balanced Sound Composition in Urban Green Spaces

Lauren Gray – lreedgray@gmail.com
Jack Sullivan – jack@umd.edu
Christopher Ellis – cdellis@umd.edu
Ian Hoffman – ihoffman@jhu.edu

University of Maryland
4291 Fieldhouse Dr
College Park, MD 20742-5235

Popular version of paper ‘4pNS2 – Sound of the city: Creating a balanced sound composition in urban green spaces
Presented Thursday afternoon, December 2nd, 2021
181st ASA Meeting, Seattle Washington

Sound in the landscape is an important and often-ignored aspect of the human experience. In different landscapes seemingly cacophonous sounds can create a symphony, combining the beloved sounds of nature and humans with the often less desirable, but no less important, sounds of traffic and sirens. This symphony of sounds forms a soundscape, a “sonic environment” (Schafer, 1977) that humans experience. Much like landscapes, soundscapes can vary greatly depending on the sound sources adding their voices. This thesis puts the urban soundscape, and its relationship to the landscape and design, under a microscope.

The work of this thesis began with an investigation into the theories of composers John Cage and R. Murray Schafer, along with key research of outdoor soundscape design and application. By establishing ways in which sound had previously been explored from a musical perspective and practical application, the creation of a new design theory and methodology for surveying sound was formed. The design theory demands that the existing soundscape of a landscape be documented and analyzed to ensure that it best suits the wants and needs of its users. Once the soundscape has been documented and the needs established, any necessary changes can be made by altering the landscape. The method of sound documentation was formed in using both auditory and visual components. The auditory portion for this sound documentation methodology has the surveyor take auditory recordings using a portable recording device. The visual portion was created in this thesis and inspired by styles of notation in Western Classical Music, John Cage, R. Murray Schafer, and Landscape Architect, Lawrence Halprin. This combined method allows for sounds in the landscape to be recorded for both the eyes and ears, showing the many attributes of a soundscape over the course of 10-minute intervals.

To test the theory and method, they were then applied to the re-making of an urban soundscape and landscape. Located in Washington D.C., the site was chosen based on a variety of factors including but not limited to, sound sources, size of space, and geographic location. To begin the design process, the site was then analyzed both sonically and visually. The resulting soundscape and landscape design created a more varied and engaging sonic experience, further exploring the impacts of sound on the perception of place and a close examination of the conscious, subconscious, beautiful, and necessary in the design of landscape.

Urban Green Spaces

Schafer, R. Murray. (1977). The tuning of the world. Knopf. https://catalog.hathitrust.org/Record/000086818

1pNS2 – Soundscape, traffic safety, and requirements for public health

Brigitte Schulte-Fortkamp – b.schulte-fortkamp@tu-berlin.de

Technical University Berlin
Psychoacoustics and Noise Effects
Einsteinufer 25
10587 Berlin -Germany

Popular version of paper 1pNS2
Monday, May 13, 2019
177th ASA Meeting in Louisville, KY

When you think about your safety and health with regard to road traffic you may not immediately think about avoidable noise pollution. But: The World Health Organization (WHO) has published a new Noise Guideline for the European Region in October 2018. The focus is set on health effects caused by noise from different sources whereby as transportation noise as road traffic-, railway- and aircraft-noise play the major role.

The use of environmentally friendly electrical vehicles can for sure decrease the road traffic noise pollution as a contribution to public health.  But for safety reason which it is of course also a public health issue there is also policy action for regulations of the use of alert signals.  There is a worldwide consideration about how this could may be counterproductive to a harmonic and healthy soundscape or even support those.

(Regulation (EU) No 540/2014 of the European Parliament 2018, U.S. National Highway Traffic Safety Administration 2018,  Japan Guidelines on Electric vehicle warning sounds 2010)

Soundscape is the new way to understand people’s reaction to the sounds of the world. Soundscape is a construct of human perception that must be understood as a relationship between human beings, acoustic environments, and society. Our focus in this field is here on co-creation in acoustics, architecture, medicine, and urban planning.  It is combined with analysis, advice, and feedback from the ‘users of any acoustic environment as the primary ‘experts’ of any environment – to find creative and responsive solutions for protection of living areas and to enhance the quality of life.

The Soundscape concept is introduced as a scope to rethink the evaluation of noise pollution. The challenge is to account for the perceptual dimension and to consider the limits of acoustic measurements.

Figure 1– The recent international standard ISO 12913-1,2,3 Acoustics – Soundscape
soundscape soundscape soundscape

Figure 2 – Definition of Soundscape
– acoustic environment as perceived or experienced and/or understood by people, in context.
soundscape

Soundscape as defined in 2014 by the International Organization for Standardization (ISO)

Figure 3 – Elements in the perceptual construct of soundscape
soundscape

Context
The context includes the interrelationships between person and activity and place, in space and time. The context may influence soundscape through (1) the auditory sensation, (2) the interpretation of auditory sensation, and (3) the responses to the acoustic environment

The contribution of Soundscape (research) regarding public health means to focus on the perception as a key issue. With Soundscape it is suggested to exploring noise in its complexity and its ambivalence.  Soundscape studies investigate and find increasingly better ways to measure and hone the acoustic environment.

Figure 4 – Soundscape studies
soundscape

Figure 5 – Soundscape model including quality of life and health
soundscape

Otherwise, the new technology in the development of electrical vehicles causes policy action with regulations calling for safety reasons. Regulations and needs have to be considered with respect to the public health recommendations on exposure to environmental noise and soundscapes.

There have to be solutions that follow the need outlined in the WHO guidelines to “provide robust public health advice underpinned by evidence, which is essential to drive policy action that will protect communities from the adverse effects of noise”.

The process of tuning of urban areas with respect to the expertise of people’s mind and quality of life is related to the strategy of co-creation and provides the theoretical frame with regard to the solution of e.g. the change in an area. In other words: Approaching the field on traffic safety and public health in this holistic manner is generally needed.

To establish the Soundscape concept and the Soundscape approach, there is the need to advise the respective local actors and stakeholders in communities to using the resources given with respect to future generations and socio-cultural, aesthetic and economic effects as well. It was widely discussed in earlier publications that a platform is needed for stakeholders for co-creation and find common decisions. Moreover, the current approach within the standardization of Soundscapes have provided a big step towards enhancing the quality of life for people.

REFERENCES
WHO Environmental Noise Guidelines for the European Region (2018)

  1. Kang, J., B. Schulte-Fortkamp (Eds.) Soundscape and the built environment, CRC Press, Taylor & Francis Group, Boca Raton. (2016)
  2. Schulte-Fortkamp, (2013). Soundscape – a matter of human resources, Internoise 2013, Proc., Innsbruck, Austria
  3. Schulte-Fortkamp, J. Kang (editors) Special Issue on Soundscape, JASA 2012
  4. Kang, J., Aletta, F., Gjestland, T.T., Brown, L.A., Botteldooren, D., Schulte-Fortkamp, B., Lercher, P., Kamp, I.van., Genuit, K., Fiebig, A., Bento
  5. Coelho, L., Maffei, L., Lavia, L., (2016). Ten questions on the soundscapes of the built environment, Building and Environment, Vol. 108 (1), 284-294
  6. M. Schafer, “The Soundscape. Our sonic environment and the tuning of the world.” Rochester, Vermont: Destiny Books, (1977).
  7. Hollstein, “Qualitative approaches to social reality: the search for meaning” in: John Scott & Peter J. Carrington (Eds.): Sage handbook of social network analysis. London/New Delhi: Sage. (2012)
  8. Hiramatsu, “Soundscape: The Concept and Its Significance in Acoustics,” Proc. ICA, Kyoto, 2004.
  9. Fiebig, B. Schulte-Fortkamp, K. Genuit, „New options for the determination of environmental noise quality”, 35th International Congress and Exposition on Noise Control Engineering INTER-NOISE 2006, 04.-06.December 2006, Honolulu, HI.
  10. Lercher, B. Schulte-Fortkamp, “Soundscape and community noise annoyance in the context of environmental impact assessments,” Proc. INTER-NOISE 2003, 2815-2824, (2003).
  11. Schulte-Fortkamp, D. Dubois: (editors) Acta Acustica united with Acustica, Special Issue, Recent advances in Soundscape research, Vol 92 (6), (2006).
  12. Regulation (EU) No 540/2014 of the European Parliament and of the Council of 16 April 2014 on the sound level of motor vehicles and of replacement silencing systems, and amending Directive 2007/46/EC and repealing Directive 70/157/EEC (OJ L 158, 27.5.2014)
  13. Regulation No 138 of the Economic Commission for Europe of the United Nations (UNECE) — Uniform provisions concerning the approval of Quiet Road Transport Vehicles with regard to their reduced audibility [2017/71] (OJ L 9, 13.1.2017)