What is a webchuck?

Chris Chafe – cc@ccrma.stanford.edu

Stanford University
CCRMA / Music
Stanford, CA 94305
United States

Ge Wang
Stanford University

Michael Mulshine
Stanford University

Jack Atherton
Stanford University

Popular version of 1aCA1 – What would a Webchuck Chuck?
Presented at the 184 ASA Meeting
Read the abstract at https://doi.org/10.1121/10.0018058

Take all of computer music, advances in programming digital sound, the web and web browsers and create an enjoyable playground for sound exploration. That’s Webchuck. Webchuck is a new platform for real-time web-based music synthesis. What would it chuck? Primarily, musical and artistic projects in the form of webapps featuring real-time sound generation. For example, The Metered Tide video below is a composition for electric cellist and the tides of San Francisco Bay. A Webchuck webapp produces a backing track that plays in a mobile phone browser as shown in the second video

Video 1: The Metered Tide

The backing track plays a sonification of a century’s worth of sea level data collected at the location while the musician records the live session. Webchuck has fulfilled a long-sought promise for accessible music making and simplicity of experimentation.

Video 2: The Metered Tide with backing track

Example webapps from this new Webchuck critter are popping up rapidly and a growing body of musicians and students enjoy how they are able to produce music easily and on any system. New projects are fun to program and can be made to appear anywhere. Sharing work and adapting prior examples is a breeze. New webapps are created by programming in the Chuck musical programming language and can be extended with JavaScript for open-ended possibilities.

Webchuck is deeply rooted in the computer music field. Scientists and engineers enjoy the precision that comes with its parent language, Chuck, and the ease with which large-scale audio programs can be designed for real-time computation within the browser. Similar capabilities in the past have relied on special purpose apps requiring installation (often proprietary). Webchuck is open source, runs everywhere a browser does and newly-spawned webapps are available as freely-shared links. Like in any browser application, interactive graphics and interface objects (sliders, buttons, lists of items, etc.) can be included. Live coding is the most common way of using Webchuck, developing a program by hearing changes as they are made. Rapid prototyping in sound has been made possible by the Web Audio API browser standard and Webchuck combines this with Chuck’s ease of abstraction so that programmers can build up from low-level details to higer-level features.

Combining the expressive music programming power of Chuck with the ubiquity of web browsers is a game changer that researchers have observed in recent teaching experiences. What could a Webchuck chuck? Literally everything that has been done before in computer music and then some.

Science Communication Award: 2023

Science Communication Award 2023

March 15 2023 Deadline

Entries will be broken into categories by the Award Committee depending upon the types of nominations submitted.

Categories could include:
1) Long format award(s) (text >4,000 words; multimedia >30 minutes) from an ASA member or non-member
2) Short format award(s) (text ≤4,000 words; multimedia ≤30 minutes) from an ASA member or non-member

Entry examples include newspaper or magazine articles, TV or radio broadcasts, books, websites, TikTok channels, You Tube docuseries, etc. All entries should have been published, broadcast, printed, or posted between January 1, 2021 and December 31, 2022.

Each non-member award includes a $2,500 cash prize and a $1,000 reimbursement to attend the awards ceremony at the Ottawa Meeting in May, 2024. Each ASA member award includes a $1,000 cash prize.

Nominations can be made by the creator (self-nomination) or for any other party. For entries with multiple authors/creators, only a single author/creator will receive the travel reimbursement and the cash prize is to be split between all co-authors. Multiple entries by a single author are accepted and will be judged separately. The Awards Committee will judge entries according to their general accessibility, relevance to acoustics, accuracy, and quality. Acoustics expert creators will not be judged against non-expert creators.

Entries are to be submitted online. Be prepared to provide the following information:

Category: journalist or acoustics professional
Name, address, email address of author/s, creator/s, producer/s (indicate senior author when applicable)
Nominator’s contact information if not a self-nomination
Title of entry and date and name of publication, host site, or broadcaster
Medium: print, online, TV or radio broadcast
Circulation: number of viewers, page views, subscribers, listeners, etc.
Description of significance of work
ASA Member ID (members only)

This form is currently closed for submissions.

4pNS2 – Use of virtual reality in designing and developing sonic environment for dementia care facilities

Arezoo Talebzadeh – arezoo.talebzadeh@UGent.be
Ph.D. Student
Ghent University
Tech Lane Ghent Science Park, 126, B-9052 Gent, Belgium

Popular version of 4pNS2 – Use of virtual reality in designing and developing soundscape for dementia care facilities
Presented in the afternoon of May 26, 2022
182nd ASA Meeting in Denver, Colorado
Click here to read the abstract

Sound is essential in making people aware of their environment; sound also helps in recognizing the time of the day. People with dementia have difficulties understanding and identifying their senses. The sonic environment can help them navigate through the space and realize the time; it can also reduce their agitation and anxiety. Care facilities and nursing homes, and long-term cares (LTC) usually have an unfamiliar acoustic environment for anyone new in the place. A well-designed soundscape can enhance the feeling of safety, elevate the mood and enrich the atmosphere. Designing the soundscape that fosters well-being for a person with dementia is challenging as mental disorders change one’s perception of space. Soundscape is the sonic environment as perceived by a person in context.

This research aims to enhance the soundscape experience during the design and development of care facilities by using Virtual Reality and defining the context during the process.

Walking through the space while hearing the soundscape demonstrates how sound helps spatial orientation and understanding of time. Specific rooms can have a unique sound dedicated to them to help residents find the location. Natural soundscape in the lounge or sounds of coffee brewing in the dining room during breakfast. Birds sound inside residents’ rooms during the morning to elevate their mood and help them start their day.

Sound is not visual (tangible); therefore, it is hard to examine and experience the design before implementation. Virtual Reality is a suitable tool for demonstrating sound augmentation and the outcome. By walking through the space and listening to the augmented sonic environment, caregivers and family members can participate during the design process as they are most familiar with the person with dementia and their interests. This method helps in evaluating the soundscape. People with dementia have a different mental model. Virtual Reality can help feature diverse mental models and sympathize with people with dementia.

2aNS7 – Directional Processing in Assessment of Wind Turbine Noise

Alexander Sutin -asutin@stevens.edu
Hady Salloum – hsalloum@stevens.edu
Alexander  Sedunov- asedunov@steves.edu
Nikolay Sedunov – nsednov@stevens.edu

Stevens Institute of Technology
Sensor Technologies & Applied Research (STAR) Center
Hoboken, NJ  07030

Popular version of 2aNS7 – Directional Processing in Assessment of Wind Turbine Noise
Presented Tuesday morning,  May25, 2022, 10:50-11:05 AM, Mountain
182nd ASA Meeting, Denver
Read the article in Proceedings of Meetings on Acoustics

Assessments of Wind Turbine Generator (WTG) noise are required to comply with the US Environmental Agency and local governments and avoid legal action that may result of non-compliant operation. Current methods for WTG noise measurements require the comparison of long-term sound data recorded before and after a WTG installation. These measurements must be conducted during several months for various wind speeds and environmental conditions.

The acoustic measurements conducted for a working WTG are not reliable due to the contamination of the measurements by sources other than the noise from the wind turbines[1]. Such sources of noise include traffic (highway, rail and air), construction, industrial facilities, wind in the trees, social activities, animals, birds , etc.

The goal of our paper is to provide suggestions on how the use of a microphone array could improve the WTG noise assessment by two ways: (1) identifying and attributing noise contribution to specific sources  (2) by emphasizing of acoustic signal from the WTG.

As an example of the microphone array, we consider the sensors developed at Stevens Institute of Technology [2], [3] for low-flying aircraft and drone detection (see Figures 1a and b), these  arrays have between 5 and 10 microphones.

These sensors use a signal processing algorithm based on the correlation between the signals received by the elements of the array to find direction towards sound sources and beamforming to emphasize the acoustic signal coming from specific directions.

As a result, it is possible to identify sounds not originating from the wind turbine and remove the affected time frames from the averaged measurement of noise levels. The Stevens array directivity (see Figure 1c) shows enhancing of the signal using beamforining.

wind turbine noise

LFADSystem

wind turbine noise

DARAPicture

wind turbine noise

ARADirectivityPattern

 

Figure 1: Examples of acoustic arrays capable of direction-finding: a – acoustic system for low flying aircraft detection [2], b –array for unmanned aerial vehicle detection,c – the beam pattern for the latter array shown as relative gain depending on steered direction and frequency.

Previous prolonged deployments have provided examples of noise observation and angular localization from various sources. Figure 3 displays the spectrogram and signal angular output showing a complex situation with passing trains and vehicles.

wind turbine noise

Figure 2. An example of SRP-PHAT processing shows a complex situation with noise from a cargo train (T) and vehicles (V).

The configuration of the current Stevens system was optimized for low flying aircraft and unmanned aerial vehicle detection and localization. Since the low-frequency noise components from wind turbines are a concern for the WTG assessment, the placement of the micropnes in the arry arrays can be  modified to operate in the appropriate frequency band.

References

[1]       S. Cooper and C. Chan, “Determination of Acoustic Compliance of Wind Farms,” Acoustics, vol. 2, no. 2, pp. 416–450, 2020.

[2]       A. Sedunov, A. Sutin, N. Sedunov, H. Salloum, A. Yakubovskiy, and D. Masters, “Passive acoustic system for tracking low-flying aircraft,” IET Radar, Sonar Navig., vol. 10, no. 9, pp. 1561–1568, 2016.

[3]       A. Sedunov, D. Haddad, H. Salloum, A. Sutin, N. Sedunov. and A. Yakubovskiy, A., “Stevens drone detection acoustic system and experiments in acoustics UAV tracking.”  In 2019 IEEE International Symposium on Technologies for Homeland Security (HST) (pp. 1-7). IEEE.

1pAA1 – Analysis and actions required to ensure raceway noise levels are acceptable to the surrounding community

Dr. Bonnie Schnitta, bonnie@soundsense.com
SoundSense, LLC
Wainscott, NY

Popular version of 1pAA1 – Actions and mathematical modeling that will bring noise levels from a racetrack or raceway to a level the community will accept
Presented Monday afternoon May 23, 2022
182nd ASA Meeting
Click here to read the abstract

Historically, new and existing racetracks and raceways, encounter conflict between owners, racecar drivers and the surrounding community. Racecar drivers enjoy the thrill of a raceway, but neighboring residents often complain about the noise negatively impacting the quiet enjoyment of their homes. This is true even when the homes are near a major highway or road. Raceways and neighboring communities are attempting to find workable solutions without compromise to the safety and enjoyment of the raceway. The presentation discusses objective information used to assist communities or town boards, nearby neighbors and track owners engage in productive dialogue of the outcome of the possible solution sets. Multiple solution sets are discussed which are typically acceptable to all parties, including various barriers and other innovative noise mitigation plans. The mathematical modeling and analysis of the topography around the track is presented to show how the local terrain can be used to help to achieve the required level of track noise reduction. The information will be presented through the lenses of three case studies. Two studies demonstrate solutions for specific raceways. The other case study is used to further emphasize the importance of incorporating the local terrain into the solution set.
raceway noise

raceway noise