4pMU4 – How Well Can a Human Mimic the Sound of a Trumpet?

Ingo R. Titze – ingo.titze@utah.edu

University of Utah
201 Presidents Cir
Salt Lake City, UT

Popular version of paper 4pMU4 “How well can a human mimic the sound of a trumpet?”
Presented Thursday May 26, 2:00 pm, Solitude room
171st ASA Meeting Salt Lake City

Man-made musical instruments are sometimes designed or played to mimic the human voice, and likewise vocalists try to mimic the sounds of man-made instruments.  If flutes and strings accompany a singer, a “brassy” voice is likely to produce mismatches in timbre (tone color or sound quality).  Likewise, a “fluty” voice may not be ideal for a brass accompaniment.  Thus, singers are looking for ways to color their voice with variable timbre.

Acoustically, brass instruments are close cousins of the human voice.  It was discovered prehistorically that sending sound over long distances (to locate, be located, or warn of danger) is made easier when a vibrating sound source is connected to a horn.  It is not known which came first – blowing hollow animal horns or sea shells with pursed and vibrating lips, or cupping the hands to extend the airway for vocalization. In both cases, however, airflow-induced vibration of soft tissue (vocal folds or lips) is enhanced by a tube that resonates the frequencies and radiates them (sends them out) to the listener.

Around 1840, theatrical singing by males went through a revolution.  Men wanted to portray more masculinity and raw emotion with vocal timbre. “Do di Petto”, which is Italien for “C  in chest voice” was introduced by operatic tenor Gilbert Duprez in 1837, which soon became a phenomenon.  A heroic voice in opera took on more of a brass-like quality than a flute-like quality.  Similarly, in the early to mid- twentieth century (1920-1950), female singers were driven by the desire to sing with a richer timbre, one that matched brass and percussion instruments rather than strings or flutes.  Ethel Merman became an icon in this revolution. This led to the theatre belt sound produced by females today, which has much in common with a trumpet sound.

Titze_Fig1_Merman

Fig 1. Mouth opening to head-size ratio for Ethel Merman and corresponding frequency spectrum for the sound “aw” with a fundamental frequency fo (pitch) at 547 Hz and a second harmonic frequency 2 fo at 1094 Hz.

The length of an uncoiled trumpet horn is about 2 meters (including the full length of the valves), whereas the length of a human airway above the glottis (the space between the vocal cords) is only about 17 cm (Fig. 2). The vibrating lips and the vibrating vocal cords can produce similar pitch ranges, but the resonators have vastly different natural frequencies due to the more than 10:1 ratio in airway length.  So, we ask, how can the voice produce a brass-like timbre in a “call” or “belt”?

One structural similarity between the human instrument and the brass instrument is the shape of the airway directly above the glottis, a short and narrow tube formed by the epiglottis.  It corresponds to the mouthpiece of brass instruments.  This mouthpiece plays a major role in shaping the sound quality.  A second structural similarity is created when a singer uses a wide mouth opening, simulating the bell of the trumpet.  With these two structural similarities, the spectrum of tones produced by the two instruments can be quite similar, despite the huge difference in the overall length of the instrument.

Titze_Fig2_airway_ trumpet

Fig 2. Human airway and trumpet (not drawn to scale).

Acoustically, the call or belt-like quality is achieved by strengthening the second harmonic frequency 2fin relation to the fundamental frequency fo.  In the human instrument, this can be done by choosing a bright vowel like /ᴂ/ that puts an airway resonance near the second harmonic.  The fundamental frequency will then have significantly less energy than the second harmonic.

Why does that resonance adjustment produce a brass-like timbre?  To understand this, we first recognize that, in brass-instrument playing, the tones produced by the lips are entrained (synchronized) to the resonance frequencies of the tube.  Thus, the tones heard from the trumpet are the resonance tones. These resonance tones form a harmonic series, but the fundamental tone in this series is missing.  It is known as the pedal tone.  Thus, by design, the trumpet has a strong second harmonic frequency with a missing fundamental frequency.

Perceptually, an imaginary fundamental frequency may be produced by our auditory system when a series of higher harmonics (equally spaced overtones) is heard.  Thus, the fundamental (pedal tone) may be perceptually present to some degree, but the highly dominant second harmonic determines the note that is played.

In belting and loud calling, the fundamental is not eliminated, but suppressed relative to the second harmonic.  The timbre of belt is related to the timbre of a trumpet due to this lack of energy in the fundamental frequency.  There is a limit, however, in how high the pitch can be raised with this timbre.  As pitch goes up, the first resonance of the airway has to be raised higher and higher to maintain the strong second harmonic.  This requires ever more mouth opening, literally creating a trumpet bell (Fig. 3).

Titze_Fig3_Menzel

Fig 3. Mouth opening to head-size ratio for Idina Menzel and corresponding frequency spectrum for a belt sound with a fundamental frequency (pitch) at 545 Hz.

Note the strong second harmonic frequency 2fo in the spectrum of frequencies produced by Idina Menzel, a current musical theatre singer.

One final comment about the perceived pitch of a belt sound is in order.  Pitch perception is not only related to the fundamental frequency, but the entire spectrum of frequencies.  The strong second harmonic influences pitch perception. The belt timbre on a D5 (587 Hz) results in a higher pitch perception for most people than a classical soprano sound on the same note. This adds to the excitement of the sound.

2aMU4 – Yelling vs. Screaming in Operatic and Rock Singing

Lisa Popeil – lisa@popeil.com
Voiceworks®
14431 Ventura Blvd #200
Sherman Oaks, CA 91423

Popular version of paper 2aMU4
Presented Tuesday morning, May 24, 2016

There exist a number of ways the human vocal folds can vibrate which create unique sounds used in singing.  The two most common vibrational patterns of the vocal folds are commonly called “chest voice” and “head voice”, with chest voice sounding like speaking or yelling and head voice sounding more flute-like or like screaming on high pitches.  In the operatic singing tradition, men sing primarily in chest voice while women sing primarily in their head voice.  However, in rock singing, men often emit high screams using their head voice while female rock singers use almost exclusively their chest voice for high notes.

Vocal fold vibrational pattern differences are only a part of the story though, since the shaping of the throat, mouth and nose (the vocal tract) play a large part in the perception of the final sound.  That means that head voice can be made to “sound” like chest voice on high screams using vocal tract shaping and only the most experienced listener can determine if the vocal register used was chest or head voice.

Using spectrographic analysis, differences and similarities between operatic and rock singers can be seen.  One similarity between the two is the heightened output of a resonance commonly called “ring”.  This resonance, when amplified by vocal tract shaping, creates a piercing sound that’s perceived by the listener as extremely loud. The amplified ring harmonics can be seen in the 3,000 Hz band in both the male opera sample and in rock singing samples:

MALE OPERA – HIGH B (B4…494 Hz) CHEST VOICEPopeil1  Check Voice SingingFigure 1 MALE ROCK – HIGH E (E5…659 Hz) CHEST VOICEPopeil 2 Chest voice singingFigure 2 MALE ROCK – HIGH G (G5…784 Hz)    HEAD VOICEPopeil 3 Head voice singingFigure 3

Though each of these three male singers exhibit a unique frequency signature and whether singing in chest or head voice, each singer is using the amplified ring strategy in the 3,000Hz range amplify their sound and create excitement.

2aMU5 – Do people find vocal fry in popular music expressive?

Mackenzie Parrott – mackenzie.lanae@gmail.com
John Nix – john.nix@utsa.edu

Popular version of paper 2aMU5, “Listener Ratings of Singer Expressivity in Musical Performance.”
Presented Tuesday, May 24, 2016, 10:20-10:35 am, Salon B/C, ASA meeting, Salt Lake City

Vocal fry is the lowest register of the human voice.  Its distinct sound is characterized by a low rumble interspersed with uneven popping and crackling.  The use of fry as a vocal mannerism is becoming increasingly common in American speech, fueling discussion about the implications of its use and how listeners perceive the speaker [1].  Previous studies have suggested that listeners find vocal fry to be generally unpleasant in women’s speech, but associate it with positive characteristics in men’s speech [2].

As it has become more prevalent, fry has perhaps not surprisingly found its place in many commercial song styles as well.  Many singers are implementing fry as a stylistic device at the onset or offset of a sung tone.  This can be found very readily in popular musical styles, presumably to impact and amplify the emotion that the performer is attempting to convey.

Researchers at the University of Texas at San Antonio conducted a survey to analyze whether listeners’ ratings of a singer’s expressivity in musical samples in two contemporary commercial styles (pop and country) were affected by the presence of vocal fry, and to see if there was a difference in listener ratings according to the singer’s gender.  A male and a female singer recorded musical samples for the study in a noise reduction booth.  As can be seen in the table below, the singers were asked to sing most of the musical selections twice, once using vocal fry at phrase onsets, and once without fry, while maintaining the same vocal quality, tempo, dynamics, and stylization.  Some samples were presented more than one time in the survey portion of the study to test listener reliability.

Song Singer Gender Vocal Mode
(Hit Me) Baby One More Time Female Fry Only
If I Die Young Female With and Without Fry
National Anthem Female With and Without Fry
Thinking Out Loud Male Without Fry Only
Amarillo By Morning Male With and Without Fry
National Anthem Male With and Without Fry

Across all listener ratings of all the songs, the recordings which included vocal fry were rated as being only slightly more expressive than the recordings which contained no vocal fry.  When comparing the use of fry between the male and female singer, there were some differences between the genders.  The listeners rated the samples where the female singer used vocal fry higher (e.g., more expressive) than those without fry, which was surprising considering the negative association with women using vocal fry in speech.  Conversely, the listeners rated the male samples without fry as being more expressive than those with fry. Part of this preference pattern may have also been an indication of the singer; the male singer was much more experienced with pop styles than the female singer, who is primarily classically trained.  The overall expressivity ratings for the male singer were higher than those of the female singer by a statistically significant margin.

There were also listener rating trends between the differing age groups of participants.  Younger listeners drove the gap of preference between the female singer’s performances with fry versus non-fry and the male singer’s performances without fry versus with fry further apart.  Presumably they are more tuned into stylistic norms of current pop singers.  However, this could also imply a gender bias in younger listeners.  The older listener groups rated the mean expressivity of the performers as being lower than the younger listener groups.  Since most of the songs that we sampled are fairly recent in production, this may indicate a generational trend in preference.  Perhaps listeners rate the style of vocal production that is most similar to what they listened to during their young adult years as the most expressive style of singing. These findings have raised many questions for further studies about vocal fry in pop and country music.

 

  1. Anderson, R.C., Klofstad, C.A., Mayew, W.J., Venkatachalam, M. “Vocal Fry May Undermine the Success of Young Women in the Labor Market. “ PLoS ONE, 2014. 9(5): e97506. doi:10.1371/journal.pone.0097506.
  2. Yuasa, I. P. “Creaky Voice: A New Feminine Voice Quality for Young Urban-Oriented Upwardly Mobile American Women.” American Speech, 2010. 85(3): 315-337.

5aMU5 – Guitar String Sound Retrieved from Moving Pixels

Bożena Kostek – bokostek@audioakustyka.org
Audio Acoustics Laboratory
Faculty of Electronics
Telecommunications and Informatics
Gdansk University of Technology, Narutowicza 11/12
80-233 Gdansk, Poland

Piotr Szczuko – szczuko@sound.eti.pg.gda.pl
Józef Kotus – Joseph@sound.eti.pg.gda.pl
Maciej Szczodrak – szczodry@sound.eti.pg.gda.pl
Andrzej Czyżewski – andcz@sound.eti.pg.gda.pl
Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

Popular version of paper 5aMU5, “Vibration analysis of acoustic guitar string employing high-speed video cameras”
Presented Friday morning, May 28, 2016, 9:00, Solitude Room
171st ASA Meeting, Salt Lake City

The aim of this study was to develop a method of visual recording and analyzing the vibrations of guitar strings using high-speed cameras and dedicated video processing algorithms. The recording of a plucked string reveals the way in which the deformations propagate, composing the standing and travelling wave. The paper compares the results for a few selected models of classical and acoustic guitars, and it involves processing the vibration image into to the sound recording. The sound reconstructed in this way is compared with the sound recorded synchronously with the reference measurement microphone.

MEASUREMENT SETUP AND METHOD OF VIBRATIONS RECORDING
The measurements were made for three different models and types of guitars (Fig. 1a,b,c). The Martin D-45 is one of the best mass produced acoustic guitars in the world. Its top plate is made from spruce, its sides and back from Indian rosewood, its neck from mahogany, and its fingerboard from ebony. The guitar shape is of the Dreadnought type. In the experiments, acoustic strings were used, metal, thickness of 0.52.

Classical guitar model: MGP 145 classic, c, ar, tailpiece, prototype model. Made in 2014 by Sergei Stańczuk in SEGA Luthier Guitar Studio in Warsaw as a prototype model of classical guitar with two tailpieces. In the experiments, acoustic strings were used, metal, thickness of 0.52.

Defil guitar is a classical instrument made in 1978 by a Polish company, designed for amateur players. In the experiments, the classic nylon strings were used, with a thickness of 0.44.

a) b)Kostek_et_al_Fig.1b - Guitar c)Kostek_et_al_Fig.1c - Guitar

Fig. 1. Guitars under research: a) Martin Dreadnought D-45 acoustic guitar, b) SEGA MGP 145 classic c) classical guitar Defil

Acoustic guitars can be tested applying the acoustic methods and recording of the emitted sound, mathematical modeling and simulation (including the finite element method) or direct vibration measurement using various vibrometric methods (laser, piezoelectric transducer, electromagnetic transducer, an analogue movement meter or digital high-speed cameras and optical displacement and deformation measurement).

Fig. 2 shows the layout of the experimental setup. Video tracking and measurement of vibration are made through the use of two identical and synchronized cameras, acquiring 1,600 frames per second video with a resolution of 2000×128 pixels, and the exposure time of 100ms. A high-class measurement microphone along with an acquisition system were used for the audio recording simultaneously with video shooting. The cameras are placed side by side and oriented towards: a foothold in the bridge, the area above the opening of the sound hole, the neck section up to fret 19 (the first camera) and a section of the neck from fret 19 to fret 6 (second camera).

Kostek_et_al_Fig.2 - Guitar

Fig. 2. Setup for the video and audio recordings of the strings vibrations.

METHOD OF RECONSTRUCTING SOUND FROM IMAGE
In order to accurately measure the deformation of the strings, the video analysis algorithm was created to determine the position of the elementary section of the string visible in each column of the image. Recording, lighting, and exposure conditions were to ensure that the string was the brightest part of the image, and the result of would only be one pixel. The results of the analysis from both cameras, i.e. two vectors describing the position of the string sections were combined into a single series.

It was noticed that the string at rest acted on the bridge with the strength of its tension. Stimulation of the strings was associated with its deformation – increased stress and delivery of energy. After a substantial simplification of the analysis it was possible to perform a simple summation of the deviations of each point on the string and the conversion of the value obtained into a sound sample for each video frame.

ANALYSIS OF SOUND
Analysis of the averaged spectra highlights the differences between the image acquired and microphone recorded sound (Fig. 3.) Spectra were scaled so as that the amplitude of the first harmonic f = 110 Hz was equal for both recordings.

Martin and Luthier guitars (Fig. 3a, 3b) had very thick acoustic strings, which do not deflect much. Defil guitar (Fig. 3c) has soft strings for classical play that easily deform and vibrate with a large amplitude. The colors of generated sounds are different: the ratio between the harmonics is not maintained. This is due to the participation of the soundboard in the generation of sound.

a)Kostek_et_al_Fig.3a b)Kostek_et_al_Fig.3b c)Kostek_et_al_Fig.3c

Fig. 3. Comparison of the average spectra for the signals obtained from the microphone and reconstructed by an optical method: a) Martin Dreadnought D-45 acoustic guitar, b) SEGA MGP 145 classic c) classical guitar DefilCONCLUSION

A method of obtaining the string deformation characteristics from an image and acquiring sound samples from the observed vibrations was presented. Significant differences resulting from not taking into account the impact of soundboard were observed, therefore further work in this area will focus on the systematic study of differences in the spectra and modelling the participation of the guitar soundboard in the creation of sound.

ACKNOWLEDGEMENTS
This research study was supported by the grant, funded by the Polish National Science Centre, decision number DEC-2012/05/B/ST7/02151.

The authors wish to thank Chris Gorski and Sergiusz Stańczuk for providing the guitars.

3pID2 – The Sound of the Sacred: The State of the Art in Worship Space Acoustics

David T. Bradley – dabradley@vassar.edu
Vassar College
124 Raymond Ave
Poughkeepsie, NY 12604-0745

Erica E. Ryherd – eryherd@unl.edu
Durham School of Architectural Engineering and Construction
University of Nebraska – Lincoln
203C Peter Kiewit Institute
Omaha, NE 68182-0176

Lauren Ronsse – lronsse@colum.edu
Columbia College Chicago
33 E. Congress Parkway, Suite 601
Chicago, IL 60605

Popular version of paper 3pID2, “The state of the art in worship space acoustics”
Presented Wednesday afternoon, May 25, 2016, 1:55 in Salon D
171st ASA Meeting, Salt Lake City

From the clanging of bells to the whisper of burning incense, sound is essential to the worship experience. It follows that the acoustic environment is paramount in the sacred place – the worship space – and thoughtful design is required to achieve a worship experience full of awe and wonder. The first intentional sacred spaces were constructed over 11,000 years ago [1] and, although architectural acoustics design practices have changed immeasurably since then, the primary use of these spaces remains essentially unchanged: to provide a gathering space for communal worship.

view from ezrat nashim - worship spaceFigure 1: Temple YoungIsrael, a 550-seat orthodox synagogue in Brookline, MA designed by Gund Partnership and Cavanaugh Tocci Associates, Inc. (Photo credit: Christopher A. Storch) ceiling dome artwork - worship spaceFigure 2: Al Farooq Masjid of Atlanta (interior view of main dome), a 1500-seat Islamic mosque designed by Lee Sound Design, Inc. and Design Arts Studio and EDT Constructors, Inc. (Photo credit: Wayne Lee)

To meet this need, the four key acoustical goals that modern worship space designers must consider are to optimize reverberation time, eliminate acoustical defects, minimize ambient noise, and maximize dynamic range. These four goals are imperative in virtually all types of worship spaces around the world, despite vast dif­ferences in religious practices and beliefs. In the recent publication, Worship Space Acous­tics: 3 Decades of Design [2], the application of these goals is seen in 67 churches, synagogues, mosques, and other worship spaces designed in the past thirty years. Each space and each religion has its own id­iosyncratic acoustic challenges, from a visually translucent but acoustically transparent partition required to separate men and women in an orthodox syna­gogue in Brookline, MA (Figure 1) to the attenuation of a focused acoustic reflection from the dome of a mosque in Atlanta, GA (Figure 2). One space featured in the book, Temple Israel (Figure 3), shows the connectedness of acoustical design in worship spaces. It is part of a special project, the Tri-Faith Initiative, a 14-acre complex in Omaha, NE uniting three Abrahamic faith groups, Temple Israel, Countryside Community Church (United Church of Christ), and The American Muslim Institute. As each of these three worship spaces is constructed on the site, they all must have the four key acoustical goals considered.

figure_3 - worship spaceFigure 3: Temple Israel, a 900-seat reform synagogue in Omaha, NE designed by Acentech Incorporated and Finegold Alexander + Associates. (Photo credit: Finegold Alexander + Associates) view from the stageFigure 4: The Star Performing Arts Centre, a 5000-seat multi-use space in Singapore designed by Arup (completed as Artec) and Andrew Bromberg of Aedas.

In the past three decades, worship spaces have seen an increased need for multi-functionality, often hosting religious services with varying acoustical needs. For example, the Star Performing Arts Centre (Figure 4) in Singapore serves as the home of the New Creation Church, seats 5000 people, and supports programing ranging from traditional worship services to pop music concerts to televised national events. Some spaces must even serve more than one religion, such as the Sacred Space (Figure 5), a multi-faith house of worship constructed in the shell of an old Boston chapel that caught fire in the mid-90s, now used for meditation, private worship, and small gatherings. These varying usage requirements require careful consideration of the acoustic design, often relying on variable acoustics such as retractable sound absorption and the use of sophisticated electroacoustics systems.

interior view - worship spaceFigure 5: The Sacred Space, 150-seat multifaith house of worship in Boston, MA designed by Acentech Incorporated and Office dA. figure_6 - worship spaceFigure 6: Mean reverberation times at 500 Hz octave band center frequency for 67 worship spaces of varying seating capacity.

Although the use of each space may vary, the most important acoustic goal remains to optimize the reverberation time. This is the time necessary for sound in a space to decay to one-millionth of its original intensity. Essentially, it describes how the sound energy decays, perceived as the fading away of sound over time. Typically, reverberation time decreases as more sound absorption is added, and increases as the size of the space increases. Figure 6 shows the mean reverberation times (500 Hz) for the various seating capacities of the 67 worship spaces. Seating capacity is generally directly proportional to size of the space, and the reverberation times here show the general trend of increasing with increasing size up to about 2000 seats. For 2000 seats and beyond, the data show a marked decrease in reverberation time. For these larger spaces, there tends to be a higher proportion of sound absorbing material used in the design, typically to allow for the use of electroacoustics systems that require a large number of loudspeakers. Spaces that rely heavily on electroacoustics to achieve the desired sonic environment require non-reflective surfaces and lower reverberation times for the microphone-loudspeaker systems to work properly.

Regardless of reverberation time, the goal remains the same, to create a gathering space for worship where the sound is sacred.

  1. K. Schmidt, “Göbekli Tepe, Southeastern Turkey: A Preliminary Report on the 1995-1999 Excavations,” Paléorient, 26(1), 45-54, 2000.
  2. D. T. Bradley, E. E. Ryherd, and L. Ronsse (Eds.), Worship Spaces Acoustics: 3 Decades of Design, (New York, NY, Springer, 2016).

4pMU5 – Evolution of the piano

Nicholas Giordano – nig003@auburn.edu
Auburn University
Auburn, AL

Popular version of paper 4pMU5 – Evolution of the piano
Presented Thursday afternoon, November 5, 2:25 PM, Grand Ballroom 2
170th ASA Meeting, Jacksonville, Fl
Click here to read the abstract

Introduction 
The piano was invented 300 years ago by Bartolomeo Cristofori, who in his “day job” was responsible for the instruments owned by the famous Medici family in Florence, Italy. Many of those instruments were harpsichords, and the first pianos were very similar to a harpsichord with one crucial difference. In a harpsichord the strings are set into motion by plucking (as in a guitar) and the amplitude of a pluck is independent of how forcefully a key is pressed.  In a piano the strings are struck with a hammer and Cristofori invented a clever mechanism (called the piano “action”) through which the speed of the hammer and hence the volume of a tone is controlled by the force with which a key is pressed. In this way a piano player can vary the loudness of notes individually, something that was not possible with the harpsichord or organ, the dominant keyboard instruments of the day. This gave the piano new expressive capabilities which were soon exploited by composers such as Mozart and Beethoven.

Figure 1 shows one of the three existing Cristofori pianos. It is composed almost entirely of wood (except for the strings) and has a range of 4 octaves – 49 notes. It has 98 strings (two for each note), each held at a tension of about 60 Newtons (around 13 lbs), and is light enough that two adults can easily lift it. A typical modern piano is shown in Figure 2. It has a range of 7-1/3 octaves – 88 notes – and more than 200 strings (most notes have three strings), each held at a tension of around 600 Newtons. This instrument weighs almost 600 lbs.

Piano built by Bartolomeo Cristofori in 1722
Figure 1 caption. Piano built by Bartolomeo Cristofori in 1722. This piano is in the Museo Nationale degli Strumenti Musicali in Rome. Image from Wikimedia Commons (wikimedia.org/wikipedia/commons/3/32/Piano_forte_Cristofori_1722.JPG). The other pianos made by Cristofori and still in existence are in the Metropolitan Museum of Art in New York City and the Musikinstrumenten-Museum in Leipzig.

A typical modern piano giordano_fig_2
Figure 2 caption. A typical modern piano. This is a Steinway model M that belongs to the author. Photo by Lizz Giordano.

My conference paper considers how the piano in Figure 1 evolved into the instrument in Figure 2. As is described in the paper, this evolution was driven by a combination of factors including the capabilities and limitations of the human auditory system, the demands of composers ranging from Mozart to Beethoven to Rachmaninoff, and developments in technology such as the availability of the high strength steel wire that is now used for the strings.

How many notes?
The modern piano has nearly twice as many notes as the pianos of Cristofori. These additional notes were added gradually over time. Most of the keyboard music of J. S. Bach can be played on the 49 notes of the first pianos, but composers soon wanted more. By Mozart’s time in the late 1700s, most pianos had 61 notes (a five octave range). They expanded to 73 notes (six octaves) for Beethoven in the early 1800s, and eventually to the 88 notes we have today by about 1860. The frequency range covered by these notes extends from around 25 Hz to just over 4000 Hz. The human ear is sensitive to a much wider range so one might ask “why don’t we have even more notes?” The answer seems to lie in the way we hear tones with frequencies that are much outside the piano range. Tones with frequencies below the piano range are heard by most people as clicks [1], and such tones would not be useful for most kinds of music. Tones with frequencies much above the high end of the piano range pose a different problem. In much music two or more tones are played simultaneously to produce chords and similar combinations. It turns out that our auditory system is not able to perceive such “chordal” relationships for tones much above the piano range [1]. Hence, these tones cannot be used by a composer to form the chords and other note combinations that are an essential part of western music. The range of notes found in a piano is thus determined by the human auditory system – this is why the number of notes found in a piano has not increased beyond the limits reached about 150 years ago.

Improving the strings
The piano strings in Cristofori’s piano were thin (less than 1 mm in diameter) and composed of brass or iron. They were held at tensions of about 60 N, which was probably a bit more than half their breaking tensions, providing a margin of safety. An increase in tension allows the string to be hit harder with the hammer, producing a louder sound. Hence, as the piano came to be used more and more as a solo instrument and as concert halls grew in size, piano makers needed to incorporate stronger strings. These improved strings were generally composed of iron with controlled amounts of impurities such as carbon. The string tensions used in piano design thus increased by about a factor of 10 from the earliest pianos to around 1860 at which time steel piano wire was available. Steel wire continues to be used in modern pianos, but the strength of modern steel wire is not much greater than the wire available in 1860, so this aspect of piano design has not changed substantially since that time.

Making a stronger case
The increased number of strings in a modern piano combined with the greater string tension results in much larger forces, by about a factor of 20, on the case of a modern instrument as compared to the Cristofori piano. The case of an early piano was made from wood but the limits of a wooden case were reached by the early 1800s in the pianos that Beethoven encountered. To cope with this problem, piano makers then added metal rods and later plates to strengthen the case, leading to what is now called a “full metal plate.” The plate is now composed of iron (steel is not required since iron under compression is quite strong and stable) and is visible in Figure 2 as the gold colored plate that extends from the front to the back of the instrument. Some piano makers objected to adding metal to the piano, arguing that it would give the tone a “metallic” sound. They were evidently able to overlook the fact that the strings were already metal. Interestingly, the full metal plate was the first important contribution to piano design by an American, as it was introduced in the mid-1820s by Alphaeus Babcock.

Making a piano hammer
As the string tension increased it was also necessary to redesign the piano hammer. In most early pianos the hammer was fairly light (about 1 g or less), with a layer of leather glued over a wooden core. As the string tension grew a more durable covering was needed, and leather was replaced by felt in the mid-1800s. This change was made possible by improvements in the technology of making felt with a high and reproducible density. The mass of the hammer also increased; in a modern piano the hammers for the bass (lowest) notes have a mass more than 10 times greater than in Cristofori’s instruments.

How has the sound changed?
We have described how the strings, case, hammers, and range of the piano have changed considerably since Cristofori invented the instrument, and there have been many other changes as well. It is thus not surprising that the sounds produced by an early piano can be distinguished from those of a modern piano. However, the tones of these instruments are remarkable similar – even the casual listener will recognize both as coming from a “piano.” While there are many ways to judge and describe a piano tone, the properties of the hammers are, in the opinion of the author (an amateur pianist), most responsible for the differences in the tones of early and modern pianos. The collision between the hammer and string have a profound effect on the tone, and the difference in the hammer covering (leather versus felt) makes the tone of an early piano sound more “percussive” and “pluck-like” than that of a modern piano. This difference can be heard in sound examples that accompany this article.

The future of the piano
While the piano is now 300 years old, its evolution from Cristofori’s first instruments to the modern piano was complete by the mid-1800s. Why has the piano remained unchanged for the past 150 years? We have seen that much of the evolution was driven by improvements in technology such as the availability of steel wire that is now used for the strings. Modern steel wire is not much different than that available more than a century ago, but other string materials are now available. For example, wires made of carbon fibers can be stronger than steel and would seem to have advantages as piano strings [2], but this possibility has not (yet) been explored in more than a theoretical way. Indeed, the great success of the piano has made piano makers, players, and listeners resistant to major changes. While new technologies or designs will probably be incorporated into the pianos of the future, it seems likely that it will always sound much like the instrument we have today.

The evolution of the piano is described in more detail in an article by the author that will appear in Acoustics Today later this year. Much longer and more in-depth versions of this story can be found in Refs. 3 and 4.

[1] C. J. Plack, A. J. Oxenham, R. R. Fay, and A. N. Popper (2005). Pitch: Neural Coding and Perception (Springer), Chapter 2.

[2] N. Giordano (2011). “Evolution of music wire and its impact on the development of the piano,” Proceedings of Meetings on Acoustics 12, 035002.

[3] E. M. Good (2002). Giraffes, Black Dragons, and Other Pianos, 2nd edition (Stanford University Press).

[4] N. J. Giordano (2010). Physics of the Piano (Oxford University Press).

Sound examples
Both of these audio examples are the beginning of the first movement of Mozart’s piano sonata in C major, K. 545. The first one is played with a piano that is a copy of an instrument like the ones Mozart played. The second audio example was played with a modern piano.

(1) Early piano. Played by Malcom Bilson in a copy of a c. 1790 piano made by Paul McNulty (CD: Hungaroton Classic, Wolfgang Amadeus Mozart Sonatas Vol. III, Malcolm Bilson, fortepiano, HCD31013-14).

 

(2) Modern piano. Played by Daniel Barenboim on a modern (Steinway) piano (CD: EMI Classics, Mozart, The Piano Sonatas, Catalog #67294).